
Basic Deep Q-learning Bot for
FightingICE AI platform

This is a simple description of an example Deep Q-learning (DQN[1]) AI, BasicBot, for fighting

game AI platform FightingICE[2] We have implemented a simple Deep Q-learning algorithm

with replay memory in Python 3.5. BasicBot collects a state and action pair through game

playing and stores it into replay memory. To speed up this process, we run multiple games in

parallel. Simultaneously, the main thread of the training program updates Q-function (neural

network) using collected data. The neural network has two convolution layers and two fully

connected layers. It determines which action is the best action based on game screen input

and its current energy value. The network was trained using tensorflow and converted for

non-tensorflow environment using tfdeploy.

We trained this bot against DisplayInfo Bot (simple scripted bot). Although we could not

show outperforming performance against DisplayInfo, BasicBot showed some proper

behavior in each situation. This implies BasicBot could learn to do a simple task.

We launched multiple games in the training phase to increase data gathering speed. Since

we could not control game flow freely and skip the unnecessary time consuming for keeping

game frame rate, we had to wait for each frame to collect one data tuple (s1 , a, s2 , r).

Instead, we could collect data from other games with multiple instances. Even though there

are more advanced methods [3] , using multiple instances of a game for reinforcement

learning, we used the standard DQN with replay memory. Therefore, there are no significant

changes in our method, compared to the original one, except for the data gathering process.

Environment setting

Simple explanation of each file

BasicBot.py

AI implementation

BasicBot.pkl

Pretrained AI (neural network's weights)

DisplayInfo.py and SandBag.py

Opponent AIs for training

Main_PyAIvsPyAI_BasicBotvcDisplayInfo_6500.py

Executes the AIs for a fight

Installation
Copy all files to Python directory in FTG3.10 and copy 'BasicBot.pkl' to

'..FightingICEver.3.10/data/aiData/BasicBot/.'

or

Neural Network Architecture

n

Number of samples in mini batch

Screen (Input)

Current and previous three gray scaled screen images

Resolution: 38 × 57; higher resolution needs more time to get an image

The AI was P1, and its opponent or P2’s pixel values were inverted during

training. Note that because in the competition all games will be run in "--

inverted-player 1", the following lines have been introduced to invert the

screen when the AI is P1 (in other words, to ensure the opponent is always

inverted): if self.player:

 screen = -screen

All pixel values are normalized to [-1,1]

Energy (Input)

Divided by 300 to normalize

Single float point value

Conv1

2d convolution layer: # of filter: 8, kernel size: 6, stride: 2

Conv2:

2d convolution layer: # of filter: 8, kernel size: 3, stride: 1

FC1:

Fully connected layer: # of node 256

FC2:

Fully connected layer: # of node 3

Conv1 Conv2 FC1 FC2

Screen Conv1 ReLU Conv2 Dropout 0.5 ReLU FC1 ReLU FC2 Dropout 0.5 ReLU Action

─┬ FightingICEver3.10

├ Python
└ BasicBot <-- copy to here

─┬ FightingICEver3.10
└ Python <-- copy to here

• Action (output)

Each node's output represents the Q-value of one of the 10 action types below.

Actions: key input when BasicBot in the left side (change L and R when BasicBot

in the right side; ' ' means no key input)

L, , , , (defense)

LA, , , , (throw)

L, ,L, , , , (backstep)

R, ,R, , , , (Dash)

B, ,B, , B, , (B)

DB, ,DB, ,DB, , (2_B)

D, DR, RA, , , , (2 3 6_A)

D, DR, RB, , , , (2 3 6_B)

D, LD, LA, , , , (2 1 4_A)

D, LD, LB, , , , (2 1 4_B)

BasicBot chooses the best action that has the highest Q-value and sufficient

energy to perform it. Although the action has the highest value, it will be

discarded if there is not enough energy to perform it.

Testing

After running the FightingICE server with the options

 --py4j --port 6500 --black-bg --inverted-player 1

run the following command:

It finds 'BasicBot.pkl' (parameter file) from the current working directory or

'../FightingICEver.3.10/data/aiData/BasicBot/.'

Note that according to the competition rules, the parameter file must be placed in

'../FightingICEver.3.10/data/aiData/BasicBot/.'

1. V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,” 	

arXiv:1312.5602 [cs], Dec. 2013. ↩	
2. “Welcome to Fighting Game AI Competition.” [Online]. Available:

http://www.ice.ci.ritsumei.ac.jp/~ftgaic/. [Accessed: 17-Mar-2017]. ↩	
3. V. Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,”

arXiv:1602.01783 [cs], Feb. 2016. ↩	

~$ python Main_PyAIvsPyAI_BasicBotvsDisplayInfo_6500.py

