
Tutorial: Creating maze games
Copyright 2003-2004, Mark Overmars
Last changed: September 2,2004
Uses: version 6.0, advanced mode
Level: Beginner

Even though Game Maker is really simple to use and creating intricate games is easy, at
first glance the possibilities might be a bit overwhelming and it is difficult to understand
where to start. This tutorial is meant to show you how to make one of the more easy types
of games: a maze game. In a number of steps it leads you through the process of creating
a game. The nice part is that from the first step on we have a game that, in further steps,
becomes more extended and more appealing. All partial games are provided and can be
loaded into Game Maker.

The game idea
Before starting creating a game we have to come up with an idea of what the game is
going to be. This is the most important (and in some sense most difficult) step in
designing a game. A good game is exciting, surprising and addictive. There should be
clear goals for the player, and the user interface should be intuitive.

The game we are going to make is a maze game. Each room consists of a maze. To
escape the maze the player must collect all diamonds and then reach the exit. To do so the
player must solve puzzles and monsters must be avoided. Many puzzles can be created:
blocks must be pushed in holes; parts of the room can be blown away using bombs, etc. It
is very important to not show all these things in the first room. Gradually new items and
monsters should appear to keep the game interesting.

So the main object in the game is a person controlled by the player. There are walls
(maybe different types to make the maze look more appealing). There are diamonds to
collect. There are items that lie around that do something when picked up or touched by
the player. One particular item will be the exit of the room. And there are monsters that
move by themselves. But let us tackle these things one by one.

A simple start
As a first start we forget about the diamonds. We simply want a game in which you must
reach the exit. There are three crucial ingredients in the game: the player, the wall, and
the exit. We will need a sprite for each of them and make an object for each of them. You
can find the first very simple game under the name maze_1.gm6. Please load it and
check it out.

The objects
Let us first create the objects. For each of the three objects we use a simple 32x32 sprite:

Now we create three objects. Let us first make the wall object. We will give it the wall
sprite as image and make it solid by checking the box labeled Solid. This will make it
impossible for other objects, in particular the person, to penetrate the wall. The wall
object does not do anything else. So no events need to be defined for it.

Secondly, let us create the goal object. This is the object the player has to reach. It is a
non-solid object. We decided to give it a picture of a finish flag. This makes it clear for
the player that he has to go here. When the person meets it we need to go to the next
room. So we put this action in this collision event (it can be found in the tab main1). This
has one drawback. It causes an error when the player has finished the last room. So we
have to do some more work. We first check whether there is a further room. If so we
move there. Otherwise we restart the game. So the event will look as follows:

Obviously, in the full game we better do something more when the player finishes the last
level, like showing some nice image, or giving him a position in the list of best players.
We will consider this later.

Finally we need to create the person that is controlled by the player. Some more work is
required here. It must react to input from the user and it should not collide with a wall.
We will use the arrow keys for movement. (This is natural, so easy for the player.) There
are different ways in which we can make a person move. The easiest way is to move the
player one cell in the indicated direction when the player pushed the arrow key. A second
way, which we will use, is that the person moves in a direction as long as the key is
pressed. Another approach is to keep the player moving until another key is pressed (like
in PacMan).

We need actions for all for arrow keys. The actions are rather trivial. They simply set the
right direction of motion. (As speed we use 4.) To stop when the player releases the key
we use the keyboard event for <no key>. Here we stop the motion. There is one
complication though. We really want to keep the person aligned with the cells of the grid
that forms the maze. Otherwise motion becomes rather difficult. E.g. you would have to
stop at exactly the right position to move into a corridor. This can be achieved as follows.
In the control tab there is an action to test whether the object instance is aligned with a
grid. Only if this is the case the next action is executed. We add it to each arrow key
event and set the parameters to 32 because that is the grid size in our maze:

Clearly we also need to stop the motion when we hit a wall. So in the collision event for
the person with the wall we put an action that stops the motion. There is one thing you
have to be careful about here. If your person's sprite does not completely fill the cell,
which is normally the case, it might happen that your character is not aligned with a grid
cell when it collides with the wall. (To be precise, this happens when there is a border of
size larger than the speed around the sprite image.) In this case the person will get stuck
because it won't react to the keys (because it is not aligned with the grid) but it can also
not move further (because the wall is there). The solution is to either make the sprite
larger, or to switch off precise collision checking and as bounding box indicate the full
image.

Creating rooms
That was all we had to do in the actions. Now let us create some rooms. Create one or
two rooms that look like a maze. In each room place the goal object at the destination and
place the person object at the starting position.

Done
And that is all. The first game is ready. Play a bit with it. E.g. change the speed of the
person in its creation event, create some more levels, change the images, etc.

Collecting diamonds
But the goal of our game was to collect diamonds. The diamonds itself are easy. But how
do we make sure the player cannot exit the room when not all diamonds are collected? To
this end we add a door object. The door object will behave like a wall as long as there are
still diamonds left, and will disappear when all diamonds have gone. You can find the
second game under the name maze_2.gm6. Please load it and check it out.

Beside the wall, goal, and person object we need two more objects, with corresponding
sprites: the diamond and the door. The diamond is an extremely simple object. The only
action it needs is that it is destroyed when the person collides with it. So in the collision
event we put an action to delete it. The door object will be placed at a crucial place to
block the passage to the goal. It will be solid (to block the person from passing it). In the
collision event of the person with the door we must stop the motion. In the step event of
the door we check whether the number of diamonds is 0 and, if so, destroys itself. There
is an action for this. We will also play some sound such that the player will hear that the
door is opened. So the step event looks as follows:

Making it a bit nicer
Now that the basics of the game are in place, let us make it a bit nicer.

The walls look pretty ugly. So let us instead make three wall objects, one for the corner,
one for the vertical walls, and one for the horizontal walls. Give them the right sprites and

make them solid. Now with a bit of adaptation of the rooms it looks a lot nicer. Giving
the rooms a background image also helps.

To avoid having to specify collision events of the person with all these different walls
(and later similar for monsters), we use an important technique in Game Maker. We make
the corner wall object the parent of the other wall objects. This means that the wall
objects behave as special variants of the corner wall object. So they have exactly the
same behavior (unless we specify different behavior for them) Also, for other instances,
they are the same. So we only have to specify collisions with the corner. This will
automatically be used for the other wall objects. Also the door object we can give as
parent the corner wall.

Score
Let us give the player a score such that he can measure his progress. This is rather trivial.
For each diamond destroyed we give 5 points. So in the destroy event of the diamond we
add 5 points to the score. Finishing a level gives 40 points so we add 40 points to the
score in the collision event for the goal with the person.

When the player reaches the last room a high-score table must be shown. This is easy in
Game Maker because there is an action for this. The goal object does become a bit more
complicated though. When it collides with the person the following event is executed:

It adds something to the score, plays a sound, waits a while and then either goes to the
next room of, if this is the last room, shows a message, the high-score table, and restarts
the game.

Note that the score is automatically displayed in the caption. This is though a bit ugly.
Instead we will create a controller object. It does not need a sprite. This object will be
placed in all rooms. It does some global control of what is happening. For the moment we
just use it to display the score. In its drawing event we set the font and color and then use
the action to draw the score.

Starting screen
It is nice to start with a screen that shows the name of the game. For this we use the first
room. We create a background resource with a nice picture. (You might want to indicate
that no video memory should be used as it is only used in the first room.) This
background we use for the first room (best disable the drawing of the background color
and make it non-tiled.) A start controller object (invisible of course) is created that simply
waits until the user presses a key and then moves to the next room. (The start controller
also sets the score to 0 and makes sure that the score is not shown in the caption.)

Sounds
A game without sounds is pretty boring. So we need some sounds. First of all we need
background music. For this we use some nice midi file. We start this piece of music in
the start_controller, looping it forever. Next we need some sound effects for picking up a
diamond, for the door to open, and for reaching the goal. These sounds are called in the
appropriate events described above. When reaching the goal, after the goal sound, it is
good to put a little sleep action to have a bit of a delay before going to the next room.

Creating rooms
Now we can create some rooms with diamonds. Note that the first maze room without
diamonds we can simply leave in. This is good because it first introduces the player to the
notion of moving to the flag, before it has to deal with collecting diamonds. By giving a
suggestive name to the second room with the diamonds, the player will understand what
to do.

Monsters and other challenges
The game as it stands now starts looking nice, but is still completely trivial, and hence
boring to play. So we need to add some action in the form of monsters. Also we will add
some bombs and movable blocks and holes. The full game can be found in the file
move_3.gm6.

Monsters
We will create three different monsters: one that moves left and right, one that moves up
and down, and one that moves in four directions. Adding a monster is actually very
simple. It is an object that starts moving and changes its direction whenever it hits a wall.
When the person hits a monster, it is killed, that is, the level is restarted and the player
looses a life. We will give the person three lives to start with.

Let us first create the monster that moves left and right. We use a simple sprite for it and
next create an object with the corresponding sprite. In its creation event it decides to go

either left or right. Also, to make life a bit harder, we set the speed slightly higher. When
a collision occurs it reverses its horizontal direction.

The second monster works exactly the same way but this time we start moving either up
or down and, when we hit a wall, we reverse the vertical direction.

The third monster is slightly more complicated. It starts moving either in a horizontal or
in a vertical direction. When it hits a wall it looks whether it can make a left or a right
turn. If both fail it reverses its direction. This looks as follows:

To avoid problems with monsters being slightly too small, we uncheck precise collision
checking and set the bounding box to the full image.

When the person collides with a monster, we have to make some awful sound, sleep a
while, decrease the number of lives by one, and then restart the room. (Note that this
order is crucial. Once we restart the room, the further actions are no longer executed.)
The controller object, in the "no more lives" event, shows the high-score list, and restarts
the game.

Lives
We used the lives mechanism of Game Maker to give the player three lives. It might
though be nice to also show the number of lives. The controller object can do this in the
same way as with the score. But it is nicer if you actually see small images of the person
as lives. There is an action for this in the score tab. The drawing event now looks as
follows:

RT
ハイライト表示

RT
ハイライト表示

Note that we also used a font resource to display the score.

Bombs
Let us add bombs and triggers to blow them up. The idea is that when the player gets to
the trigger, all bombs explode, destroying everything in their neighborhood. This can be
used to create holes in walls and to destroy monsters. We will need three new objects: a
trigger, a bomb, and an explosion. For each we need an appropriate sprite.

The bomb is extremely simple. It just sits there and does nothing. To make sure monsters
move over it (rather than under it) we set its depth to 10. Object instances are drawn in
order of depth. The ones with the highest depth are drawn first. So they will lie behind
instances with a smaller depth. By setting the depth of the bomb to 10 the other objects,
that have a default depth of 0, are drawn on top of it.

The trigger is also rather simple. When it collides with the person it turns all bombs into
explosions. This can be achieved by using the action to change an object in another
object. At the top we indicate that it should apply to all bombs.

The explosion object just shows the animation. After the animation it destroys itself.
(You have to be careful that the origin of the explosion is at the right place when turning
a bomb into it.) The object also must destroy everything it touches. This requires a little
bit of work. First of all, we do not want the explosion to destroy itself so we move it
temporarily out of the way. Then we use actions to destroy all instances at positions
around the old position of explosion. Finally we place the explosion back at the original
place.

Note that this goes wrong if the person is next to the bomb! So make sure the triggers are
not next to the bombs.

It is important to carefully design the levels with the bombs and triggers, such that they
present interesting challenges.

Blocks and holes
Let us create something else that will enable us to make more complicated puzzles. We
create blocks that can be pushed by the player. Also we make holes that the player cannot
cross but that can be filled with the blocks to create new passages. This allows for many
possibilities. Blocks have to be pushed in a particular way to create passages. And you
can catch monsters using the blocks.

The block is a solid object. This main problem is that it has to follow the movement of
the person when it is pushed. When it collides with the person we take the following
actions: We test whether relative position 8*other.hspeed, 8*other.vspeed is empty. This
is the position the block would be pushed to. If it is empty we move the block there. We
do the same when there is a hole object at that position. To avoid monsters running over
blocks we make the corner wall the parent of the block. This does though introduce a
slight problem. Because a collision event is defined between the person and the corner
wall and not between the person and the block, that event is executed, stopping the
person. This is not what we want. To solve this we put a dummy action (just a comment)
in the collision event of the person with the block. Now this event is executed instead,
which does not stop the person. (To be precise, the new collision event overrides the
collision event of the parent. As indicated before, you can use this to give child objects
slightly different behavior than their parents.

The hole is a solid object. When it collides with the block it destroys itself and the block.
We also make the corner wall its parent to let it behave like a wall.

With the blocks and holes you can create many intriguing rooms. There is though a little
problem. You can easily lock yourself up such that the room can no longer be solved. So
we need to give the player the possibility to restart the level, at the cost of one life. To
this end we use the key R for restart. In this keyboard event for the controller we simply
subtract one from the lives and restart the room.

This finishes our third version of the maze game. It now has all the ingredients to make a
lot of interesting levels.

Some final improvements
Let us now finalize our game. We definitely should improve the graphics. Also we need a
lot more interesting levels. To do this we add some bonuses and add a few more features.
The final game can be found in the file maze.gm6.

Better graphics
The graphics of our current game is rather poor. So let us do some work to improve it.
The major thing we want to change is to make the person look in the direction he is
going. The easiest way to achieve this is to use a new image that consists of 4 subimages,
one for each direction, as follows:

 Normally Game Maker cycles through these subimages. We can avoid this by setting the
variable image_speed to 0. When we change the direction of the character, we can
change the subimage shown by the action to change the sprite:

A similar thing we can do for all the monsters but here there are no explicit events where
we change the direction. It is easier to add a test in the end step event to see in which
direction the monster is moving and adapt the sprite based on that.

Bonuses
Let us add two bonuses: one to give you 100 points and the other to give you an extra
life. They are both extremely simple. When they meet the person they play a sound, they
destroy themselves, and they either add some points to the score or 1 to the number of
lives. That is all.

One way streets
To make the levels more complicated, let us add one-way streets that can only be passed
in one direction. To this end we make four objects, each in the form of an arrow, pointing
in the directions of motion. When the person is completely on it we should move it in the
right direction. We do this in the step event of the person. We check whether the person

is aligned to the grid in the right way and whether in meets the particular arrow. If so, we
set the motion in the right direction. (We set it to a speed of 8 to make it more
interesting.)

Frightened monsters
To be able to create pacman like levels we give every monster a variable called afraid.
In the creation event we set it to 0 (false). When the person meets a new ring object we
set the variable to true for all monsters and we change the sprite to show that the monster
is indeed afraid. Now when the person meets the monster we first check whether it is
afraid or not. If it is afraid the monster is moved to its initial position. Otherwise, the
player looses a life. See the game for details.

Now let’s make a game out of it
We now have created a lot of object, but we still don’t have a real game. A very
important issue in games is the design of the levels. They should go from easy to hard. In
the beginning only a few objects should be used. Later on more objects should appear.
Make sure to keep some surprises that only pop up in level 50 or so. Clearly the levels
should be adapted to the intended players. For children you definitely need other puzzles
than for adults.

Also a game needs documentation. In Game Maker you can easily add documentation
using the Game Information. Finally, players won’t play the game in one go. So you
need to add a mechanism to load and save games. Fortunately, this is very easy. Game
Maker has a built- in load and save mechanism. F5 saves the current game, while F6 loads
the last saved game. You should though put this in the documentation.

You find a more complete game, including all this in the file maze.gm6. Please load it,
play it, check it out, and change it as much as you like. In particular, you should add
many more levels (there are only 20 at the moment). Also you can add some other
objects, like e.g. keys that open certain doors, transporters that move you from one place
in the maze to another, bullets that the person can shoot to kill monsters, doors that open
and close from time to time, ice on which the person keeps moving in the same
directions, shooting traps, etc.

Finally
I hope this tutorial helped you in creating your own games in Game Maker. Remember to
first plan your game and then create it step by step (or better, object by object). There are
always many different ways in which things can be achieved. So if something does not
work, try something else. Good luck!

