
Applying Hybrid Reward Architecture
to a Fighting Game AI

Yoshina Takano
Graduate School of Information

Science and Engineering
Ritsumeikan University

Shiga, Japan
email is0263fs@ed.ritsumei.ac.jp

Wenwen Ouyang
College of Information

Science and Engineering
Ritsumeikan University

Shiga, Japan
email is0444pk@ed.ritsumei.ac.jp

Suguru Ito
Graduate School of Information

Science and Engineering
Ritsumeikan University

Shiga, Japan
email is0202iv@ed.ritsumei.ac.jp

Tomohiro Harada
College of Information

Science and Engineering
Ritsumeikan University

Shiga, Japan
email harada@ci.ritsumei.ac.jp

Ruck Thawonmas
College of Information

Science and Engineering
Ritsumeikan University

Shiga, Japan
email ruck@ci.ritsumei.ac.jp

Abstract—In this paper, we propose a method for implementing
a competent fighting game AI using Hybrid Reward Architecture
(HRA). In 2017, an AI using HRA developed by Seijen et
al. achieved a perfect score of 999,990 in Ms. Pac-Man. HRA
decomposes a reward function into multiple components and
learns a separate value function for each component in the
reward function. Due to reward decomposition, an optimal
value function can be learned in the domain of Ms. Pac-Man.
However, the number of actions in Ms. Pac-Man is only limited
to four (Up, Down, Left, and Right), and till now whether
HRA is also effective in other games with a larger number of
actions is unclear. In this paper, we apply HRA and verify its
effectiveness in a fighting game. For performance evaluation, we
use FightingICE that has 40 actions and has been used as the
game platform in the Fighting Game AI Competition at CIG since
2014. Our experimental results show that the proposed HRA AI,
a new sample AI for the competition, is superior to non-HRA
deep learning AIs and is competitive against other entries of the
2017 competition.

Index Terms—deep learning, Hybrid Reward Architecture,
muti-head agents, fighting game AI, FightingICE

I. INTRODUCTION

Reinforcement learning (RL) successfully works in many
games, but sometimes it is very slow and unstable to learn the
optimal value function in other some games. Atari 2600 game
Ms. Pac-Man was also one of the games where the optimal
value function is difficult to learn, but Seijen et al. [1] applied
Hybrid Reward Architecture (HRA) to their proposed game
AI, which won a perfect score of 999,990. This result showed
the effectiveness of HRA for RL. In HRA, a reward function
is decomposed into multiple components, and HRA learns a
value function for each component reward function. Because
each component typically only depends on a subset of all the
features, the overall value function is much smoother and can
be easier approximated by a low-dimensional representation,

enabling more effective learning. However, the number of
actions in Ms. Pac-Man is only four (Up, Down, Left, and
Right), and there has been no work showing whether HRA is
also effective in other games with a large number of actions.
We focus on fighting games, which in general have a much
higher number of actions, apply HRA to a fighting game AI
and propose a method for implementing a competent game
AI.

Mnih et al. [2] achieved a big breakthrough by their
Deep Q-Network (DQN). Their AI using DQN outperformed
humans on a large number of Atari 2600 games, by learning
a policy directly from pixels. Justesen et al. [3] showed
how macromanagement decisions in StarCraft can be learned
directly from game replays using deep learning. However,
deep learning has not yet been successfully applied to fighting
games in terms of performance. Yoon and Kim [4] applied
DQN to a fighting game, but their result, against a non-moving
opponent AI, only showed the potential of the DQN approach
in this game genre. Nguyen [5] also applied a combination
of RL and a Convolutional Neural Network, but the resulting
AI was not able to defeat the champion of the Fighting Game
AI Competition (FTGAIC) held at CIG 2015. Therefore, we
consider it is worth examining if a competent fighting game
AI can be implemented using HRA.

In this work, we use FightingICE which has been used as
the platform in FTGAIC1 at CIG since 2014 [6]. There are a
number of existing studies using FightingICE in research as
shown in the following.

Ishihara et al. [7] applied Monte-Carlo Tree Search (MCTS)
to FightingICE and improved the AI performance by perform-

1http://www.ice.ci.ritsumei.ac.jp/˜ftgaic/
https://github.com/TeamFightingICE/FightingICE

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18

Fig. 2. HRA for FightingICE where the output layer combines the results from each of the two heads

Fig. 1. A screenshot of FightingICE

ing roulette selection in MCTS’s play-out and introducing a set
of rules to work with MCTS. Demediuk et al. [8] proposed and
examined a variety of MCTS-based AIs whose aim is to adjust
their difficulty level according to the player’s level. Neufeld et
al. [9] applied Hierarchical Task Network in their AI, an entry
in the 2017 FTGAIC. However, their AI called HTNFighter
came in 8th out of 10 entries in the competition. And more
recently, Ishii et al. proposed a method for implementing a
game AI with a persona using MCTS [10] while Ishihara
et al. [11] not only considered difficulty adjustment but also
believability in their game AI research where their AI was
compared with an AI proposed by Demediuk et al. [8]. Figure
1 shows a screenshot of FightingICE.

II. PROPOSED METHOD

In this section, we describe a method for implementing a
competent fighting game AI using HRA for FightingICE.

A. Hybrid Reward Architecture

We separate the reward function into n reward functions to
learn the optimal Q-value function. The reward function of
HRA is defined as follows:

RHRA(s, a) =

n∑
i=1

wiRi(s, a), for all states s, and actions a,

(1)

where wi is the weight of the each reward function. Each agent
i of HRA, i.e., head i and its lower-layer structure, is trained
using the respective reward function Ri(s, a).

Because of individual reward function, each agent i, has
its own Q-value function,. The Q-value function of HRA is
defined as the weighted sum of all agents as follows:

QHRA(s, a; θ) =

n∑
i=1

wiQi(s, a; θ), (2)

where θ are training parameters. Each head can be viewed
alternatively as a single DQN agent, and all the heads share
multiple lower-level layers of DQN.

B. HRA for FightingICE

Figure 2 shows HRA for FightingICE. We propose using
two heads: offense head and defense head. We call this multi-
head AI. In FightingICE, to win the AI (self) has to give more
damage to the opponent (opp) than the damage its receives.
Thereby, we define the reward function as follows:

RHRA
t = Rewardoffenset +Rewarddefenset (3)

Here, we simply set the weight w of each head to 1. Each
term on the right-hand side corresponds to the respective head
and is described below where t and t+1 are the starting time
of the current action and the subsequent action, respectively,
by the AI.

1) Offense head: The offense head’s role is to learn how
to effectively give a damage to the opponent AI. The head
obtains a reward when the AI gives a damage to the opponent
AI. The reward function is defined as follows:

Rewardoffenset = HP opp
t −HP opp

t+1 . (4)

2) Defense head: The defense head’s role is to learn how
to effectively avoid opponent attacks. The head is penalized
when the AI is hit by an opponent attack. The reward function
is defined as follows:

Rewarddefenset = HP self
t+1 −HP self

t . (5)

C. Network Architecture

The network in this work is determined based on empirical
results and consists of (1) an input layer with 141 units
representing game information, (2) two hidden layers each
with 80 units using the ReLU activation function, and (3) a
head layer with two heads and 40 units per head, and (4)
an output layer consisting of 40 units; in this network, the
adjacent layers are fully connected. Because we can obtain
the game information such as HP, Energy and coordinates
of the AI and the opponent from FightingICE, we use 19
types of game-state information, leading to in total 141 input
features. Note that game states can be reconstructed based
on the 141 input features. FightingICE has 40 actions for
controlling AIs, so each head in the head layer and the output
layer have 40 units, each representing a different action. The
aforementioned game information can be separated into self
information, opponent information, and projectile information.
We describe these features in detail below.

1) Self information: The self information consists of self
HP, self Energy, self x coordinate, self y coordinate, self
motion, self speed in the x direction, and self speed in the
y direction; most of them are normalized to [0, 1]. However,
only motion is represented as a one-hot vector of 56 units
because the number of motions in FightingICE is 56.

2) Opponent information: Likewise, the opponent informa-
tion consists of opponent HP, opponent Energy, opponent x
coordinate, opponent y coordinate, opponent motion, opponent
speed in the x direction, opponent speed in the y direction, and
remaining frame (the number of remaining frames to complete
the current action); accept for motion, they are normalized to
[0, 1]. As done in the self information, motion is represented
as a one-hot vector having 56 units.

3) Projectile information: The projectile information is
composed of a projectile’s x coordinate, y coordinate, and hit
damage. Because there can be at most four projectiles at the
same time, there are four sets of this information.

III. EXPERIMENTS

In this section, we describe the details of FightingICE and
the two experiments to verify the performance of the multi-
head AI.

A. FightingICE

FightingICE is a real-time 2D fighting game platform. In
this platform, one game consists of 60-second rounds, and
one frame is set to 1/60 seconds. An AI has to decide and
input its action in one frame. To make decision making by
AIs challenging, they are given a game state by the system
with a delay of 14 frames. Each of the two characters has two
parameters: HP and Energy. Each character’s initial HP is set
to HPmax and will decrease when the respective character is
hit; the initial Energy is set to 0. After 60 seconds elapse or
HP of either character reaches 0, the game will proceed to the
next round, and both characters’ HP will be reset to HPmax.
The character with the larger remaining HP at the end of round
is the round winner. The value of HPmax is set to 10,000 in

TABLE I
LIST OF HYPERPARAMETERS

Hyperparameter Value
minibatch size 32
replay memory size 50000
target network update frequency 300
discount factor 0.9
learning rate 0.001
initial exploration 1
final exploration 0.1

the first experiment to ensure the round length is fixed to 60
seconds and it is set to 400 in the second experiment according
to the rule of Standard League of FTGAIC. The 2018 version
of FightingICE is used in our experiments.

As described above, AIs cannot obtain game states with
no delay in FightingICE. However, to construct tuples of
state, action, reward, and next state used for DQN training, a
mechanism is introduced, by which it is possible to determine
whether an action of interest can be actually executed (in other
words there are no other actions waiting to be executed) at a
given – thus delayed – game state; if so, a tuple containing the
action is created together with the other elements and added
to a memory. We note that this mechanism is not used in any
other parts in both experiments.

B. Hyperparameters

We set the hyperparameters according to our empirical
results. Their details are given in Table I.

C. Training against Machete

In the first experiment, we compare the proposed multi-head
AI with a normal (single-head) DQN. We train both AIs for
1400 rounds against Machete that won the 2015 competition.
Nguyen [5] also trained their AI against Machete, but their AI
could not outperform Machete. Here, we are curious to see the
performance of the multi-head AI against both single-head AI
and Machete. We then analyze the learning process using the
score, eqn. (6), over the number of training steps (rounds).

scoreself =
HPself

HPself +HPopp
× a (6)

where a is set to 1000, so the score above 500 indicates that
the AI wins the opponent at the current round.

D. Comparisons with other AIs

In the second experiment, we compare the multi-head AI,
the single-head AI, Machete, Ishihara’s AI (ACEMctsAi) [7],
and the AIs from the 2017 competition, including a sample
MCTS AI (MctsAi). Here we focus on their performances in
Standard League, a round-robin competition where there are
two games – three rounds per game – switching sides for each
pair of AIs, using a character called ZEN and its character data
in the 2018 FTGAIC. Because a combo system introduced in
the 2017 version has been removed, HTNFighter [9], utilizing
the combo system, could not be run.

TABLE II
RESULT OF THE COMPETITION

IV. RESULTS AND DISCUSSIONS

In this section, we show the experimental results and our
discussions in terms of whether the multi-head AI outperforms
the single-head and other AIs.

A. Training against Machete

Fig. 3. Score Transitions against Machete

Figure 3 shows the average, sampled every 100 rounds, of
five trials conducted in the first experiment. Both of the AIs
using DQN start to defeat Machete from the 150th round, and
this is the first time that DQN, to the best of our knowledge,
was successfully applied in FightingICE and was able to
defeat a former champion AI. The multi-head AI obtained
the maximum score above 700, which outperforms the single-
head. In addition, the score of the multi-head AI is more stable
than that of the single-head one.

B. Comparisons with other AIs

The result of the competition is shown in Table II, where #
of wins shows the number of winning rounds. The multi-head
AI is the 4th among 13 AIs in Standard League. Video clips
showing typical fights of the muti-head AI and the single-head
AI in this competition are also available2.

2http://www.ice.ci.ritsumei.ac.jp/˜ruck/HRA-cig2018.htm

V. CONCLUSIONS AND FUTURE WORK

According to the experiment results, the multi-head AI
obtained a higher score than the single-head AI in the training
phase. In addition, the former was ranked higher than the latter
in the conducted competition. The said results indicate that
HRA is also effective in fighting games, where AIs conduct
decision making to select their next actions from a large
number of available actions. In this paper, we used only two
heads. It is possible that using more heads will lead to a
better performance. In addition, Machete was only used as
the training opponent. The competition performance of the
multi-head AI might be improved by switching the training
opponents from a set of properly selected ones.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments. They would also like to thank their
lab members, in particular, the FightingICE team members for
their fruitful discussions. This research was partially supported
by Strategic Research Foundation Grant-aided Project for
Private Universities (S1511026), Japan.

REFERENCES

[1] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and J.
Tsang, “Hybrid reward architecture for reinforcement learning,” in Proc.
Advances in Neural Information Processing Systems. 2017. pp. 5392-
5402.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep
reinforcement learning,” in Nature, 2015, vol. 518, pp. 529-533.

[3] N. Justesen, and S. Risi, “Learning Macromanagement in StarCraft from
Replays using Deep Learning,” in Proc. Computational Intelligence and
Games (CIG), 2017 IEEE Conference on. IEEE, 2017. pp. 162-169.

[4] S. Yoon, and K.J. Kim, “Deep Q Networks for Visual Fighting Game
AI,” in Proc. Computational Intelligence and Games (CIG), 2017 IEEE
Conference on. IEEE, 2017. pp. 306-308.

[5] D.T.T. Nguyen, Supervised and Reinforcement Learning for Fighting
Game AIs using Deep Convolutional Neural Network, in Master Thesis,
Japan Advanced Institute of Science and Technology, Mar. 2017.

[6] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee and R. Thawon-
mas, “Fighting Game Artificial Intelligence Competition Platform,” in
Proc. IEEE 2nd Global Conference on Consumer Electronics (GCCE),
pp.320-323, 2013.

[7] M. Ishihara, T. Miyazaki, C.Y. Chu, T. Harada, R. Thawonmas, “Apply-
ing and Improving Monte-Carlo Tree Search in a Fighting Game AI,”
in Proc. Proceedings of the 13th International Conference on Advances
in Computer Entertainment Technology. ACM, 2016.

[8] S. Demediuk, M. Tamassia, W.L. Raffe, F. Zambetta, Xiaodong Li,
“Monte Carlo Tree Search Based Algorithms for Dynamic Difficulty
Adjustment,” in Proc. IEEE Conference on Computational Intelligence
and Games (CIG 2017), New York City, USA, Aug. 22-25, 2017.

[9] X. Neufeld, S. Mostaghim, and D. Perez-Liebana, “HTN Fighter:
Planning in a Highly-Dynamic Game,” in Proc. 2017 Computer Science
and Electronic Engineering (CEEC 2017), Colchester, UK, pp. 189-194,
Sep. 2017.

[10] R. Ishii, S. Ito, M. Ishihara, T. Harada, R. Thawonmas, “Monte-Carlo
Tree Search Implementation of Fighting Game AIs with Personas,”
in Proc. Computational Intelligence and Games (CIG), 2018 IEEE
Conference on. IEEE, 2018.

[11] M. Ishihara, S. Ito, R. Ishii, T. Harada, R. Thawonmas, “Monte-Carlo
Tree Search for Implementation of Dynamic Difficulty Adjustment Fight-
ing Game AIs Having Believable Behaviors,” in Proc. Computational
Intelligence and Games (CIG), 2018 IEEE Conference on. IEEE, 2018.

