
A Hybrid Approach for the Fighting Game AI Challenge: 

Balancing Case Analysis and Monte Carlo Tree Search 

for the Ultimate Performance in Unknown Environment 

Lam Gia Thuan1, Doina Logofatu2 and Costin Badica3 

1 Vietnamese-Germany University, Faculty of Engineering, Le Lai, Thu Dau Mot, Vietnam 
2 Frankfurt University of Applied Sciences, Department of Computer Science and Engineering, 

Nibelungenpl. 1, 60318 Frankfurt, Germany 
3 University of Craiova, Department of Computer Sciences and Information Technology, 

200285 Craiova, Romania 
logofatu@fb2.fra-uas.de 

Abstract. The challenging nature of the Fighting Game AI Challenge originates 

from the short instant of response time which is a typical requirement in real-time 

fighting games. Handling such real-time constraint requires either tremendous 

computing power or a clever algorithm design. The former is uncontrollable by 

the participants, as for the latter, the competition has received a variety of sub-

missions, ranging from the naivest case analysis approach to those using highly 

advanced computing techniques such as Genetic Algorithms (GA), Reinforce-

ment Learning (RL) or Monte Carlo Tree Search (MCTS), but none could pro-

vide a stable solution, especially in the LUD division, where the environment 

setting is unknown in advance. Our study presents our submission to this chal-

lenge in which we designed a winning solution in the LUD division which, for 

the first time, stably outperformed all players in all competition categories. Our 

results demonstrate that a proper blend of simple case analysis and advanced al-

gorithms could result in the ultimate performance. 

Keywords: Fighting Game AI Challenge, real-time fighting game, LUD divi-

sion, case analysis, MCTS. 

1 Introduction 

Advances in computing have given rise to computer game complexity, to the extent 

that human ability is no longer sufficient to handle the vast number of game states. 

Human gamers will soon be dominated by computer programs due to the emergence of 

powerful techniques such as Monte Carlo Tree Search [1] and Machine Learning [2] in 

which the programs can learn the solution with little human intervention. Aided by 

modern computer power, these algorithms have demonstrated a capacity beyond that 

of human experts with numerous examples such as Deep Blue [3] or AlphaGo [4], but 

does that imply that human guidance is completely irrelevant in this day and age? 



2 

The success of programs like AlphaGo was partially thanks to the nature of the game, 

which was chess, a turn-based game, in which modern computers are given sufficient 

time to process. However, in a real-time environment where programs must response 

reasonably well within a short instance of time, current processing power proves insuf-

ficient since modern game states can grow exponentially while processors are increas-

ingly closer to their physical limit [5]. 

This paper presents our submission to the Fighting Game AI challenge [6] 2018, a 

challenging AI competition that aims at solving the general real-time fighting problem. 

Our research focuses on the design of an algorithm that can handle the vast number of 

game states in a reasonable way given our average computational power. Our algorithm 

is a proper blend between a generic case analysis approach with the winning MCTS 

algorithm. Our results show that by blending some human wisdom with MCTS, the 

resulting performance is superior to all in existence. 

2 The Fighting Game AI Challenge 

2.1 Overview 

The Fighting Game AI Challenge is initiated by the Intelligent Computer Entertainment 

Lab of the Ritsumeikan University to promote AI research towards general fighting 

games, a classical class of games, in which players compete against each other until 

only one remains using techniques resembling those in martial arts. Starting since 2013, 

the competition has been well-received by scholars around the world and achieved a 

high reputation among the most prestigious academic conferences worldwide, includ-

ing the IEEE Conference on Computational Intelligence and Games (CIG). CIG 2018 

marked another successful milestone of the challenge with the emergence of numerous 

interesting solutions, among which was our submission, the first that could perform 

well and stably in the most challenging LUD division in all competition categories. 

2.2 Organization and Rules 

The competition consists of 3 divisions – ZEN, GARNET and LUD, each is further 

subdivided into 2 categories: STANDARD (participants fighting each other) and 

SPEED-RUNNING (participants defeating the organizer’s program in the shortest 

amount of time). Each player is given a set of actions, from which one must be selected 

within a fixed unit of time, namely frame. The player with the most HP remained after 

at most 3600 frames is the winner of the game. In the STANDARD category, the player 

that wins the most games, is the final winner, while in SPEED-RUNNING, the final 

winner is the player that wins against a common opponent in the least number of frames. 

2.3 Our focus - The LUD division 

The LUD division distinguishes itself from ZEN and GARNET by hiding all action 

data in advance. An action is characterized by a number of parameters, a subset of 



3 

which can be shown in Table 1. These parameters are vital for memorized methods 

such as Q-Learning or if-else approach, in which participants can train their program 

for a long time before the contest and store learned experiences into files that will be 

retrieved during the playtime, which is a realistic approach for the first 2 divisions in 

that they have all information published prior to the competition. Whilst for the LUD 

division, such essential information is only provided at the start of the game as a step 

to make it closer to the general fighting problem, which, at the same time, prevents 

memorized approaches from emerging victorious. That is where self-learning methods 

such as MCTS reign considering that they have no need for prior training. 

Table 1. A Sample Subset of Action Parameters. 

Parameter Name Description 

Frame Number The number of frames required to perform. 

Horizontal Speed The horizontal velocity. 

Vertical Speed The vertical velocity. 
Hit Area The impact area as a rectangle. 

State The state of opponent after getting hit. 

MCTS is, unfortunately, not without its limitations. No prior training implies the need 

for self-learning during the playtime which is not favorable in a real-time environment. 

Albeit the majority of the submissions were dominated by MCTS, only those who could 

manage to reduce its time-consuming nature could become victors. The most successful 

example being Eita Aoki [7]. By discovering a winning heuristic, he reduces the use of 

MCTS to the minimum possible and became the 3-time consecutive winner of this chal-

lenge. Nonetheless, even his solution is unable to conquer the LUD division since his 

heuristic could not be formularized without prior information. 

Our submission proposed the first stable winning solution to the challenging LUD 

division. Albeit missing a detailed case analysis made us stay only in the second place 

in the first 2 divisions, our contribution is still of paramount importance since LUD is, 

among the three, the closest division to the general real-time fighting problem. 

3 Previous Work 

The first period between 2013 and 2015 could be regarded as the Dark Ages in the 

history of the competition in that submissions were entirely populated with variants of 

the if-else approach with little to no sign of new directions. Regardless, there were nu-

merous interesting heuristics, as shown in Table 2, which are still relevant until now. 

Table 2. Competition Notable Approaches in 2013-2015 period. 

Year Approach 

2013 
 

Position Analysis + Random Limited Choices 



4 

Position Analysis + Fixed Choices + Defending/Escaping Heuristic 

 

2014 
Simple Reinforcement Learning for memorizing states 

Case Analysis + Opponent Modelling 

Simple Fuzzy Logic 

2015 

 

Position Analysis + Random Limited Choices + Runaway Case 

Simple Machine Learning for memorizing states 

 

The initial popularity of these if-else variants is understandable since advanced tech-

niques require a certain level of design and implementation skill and algorithm design 

is too hard of a field even for experienced experts, making them unpopular among par-

ticipants, most of whom are students or young professionals. Case analysis with heu-

ristics is much easier to implement and hence was the only technique in use in the first 

year of the competition. Subsequent years saw more advanced techniques such as Re-

inforcement Learning or Fuzzy Logic, but their implementation was still too simplistic 

to produce satisfiable results. Worse came to worst, they were even losing against the 

naïve and much-simpler-to-implement if-else approaches. 

In 2016, the organizers introduced MCTS into the competition as a sample, which 

marked a new standard for submissions and resulted in the emergence of more sophis-

ticated solutions. Some of the most successful participants can be mentioned as follows: 

• Eita Aoki for combining his winning unbreakable corner heuristics with MCTS 

which overwhelmingly dominated the first 2 divisions: LUD and GARNET. 

• Youssouf Ismail Cherifi for combining his consecutive strike heuristics with MCTS. 

• Man-Je Kim and Kyung-Joong Kim for the first evolutionary algorithm solution in 

combination with MCTS [8]. 

In addition, many submissions reimplemented algorithms that had been seen in previ-

ous years, but with much more mature implementation. Albeit they are unable to com-

pete with MCTS and evolutionary algorithms, they have demonstrated their true worth 

by at least outperforming simplistic case analysis approaches. 

Despite all these advances, the LUD division remained unmanageable until our par-

ticipation. In 2018, we proposed a solution that outperformed all others in LUD divi-

sions in all categories and became the first stable winning solution to this division. 

4 The winning solution to the LUD division 

Careful analysis of the previous solutions leads us the conclusion that a successful so-

lution is the one that is based on MCTS but does not abuse it, as illustrated in the fol-

lowing pseudocode: 

Action findBestAction (GameState state) { 

Action action = intelligentSearch(state) 



5 

if (action != null) 

action = MCTS(state) 

return action 

} 

In detail, a successful solution should implement an intelligent search method in addi-

tion to MCTS and prioritize it whenever possible. 

For the first 2 divisions, ZEN and GARNET, the distinction between submitted 

MCTS-based solutions usually lies in the former and almost all participants employed 

the standard implementation of MCTS provided by the organizer. Unfortunately, none 

could provide a similar solution for the LUD division, since the lack of data prevented 

participants from formularizing a working heuristic. Our study concludes that such a 

model is still applicable to the LUD division as long as the heuristic is made generic. 

4.1 Adaptive Intelligent Search 

This is the winning aspect of our solution but also the simplest one in that our analysis 

is truly generic - almost independent of actual values, which is why it works well in 

this unknown context. The search for the best action in our solution depends on the 

following factors: potential, preselection, and upper distance analysis. 

Potential. To analyze each action’s potential, it is of paramount importance to analyze 

parameters outside those mentioned in Table 1, including the startup time and the re-

sulting state of the player under attack. The latter is more prioritized than the former in 

our submission since startup time does not vary much among different actions. 

Startup time. The complete process for performing an attack consists of multiple peri-

ods, including a startup, active, recovery and canceling period, as visualized in Fig. 1. 

 

Fig. 1. Motion Illustration (The Fighting Game AI Challenge) 

Among which, we believe that startup is the most imperative period. The rationale be-

hind this decision is due to the concurrent nature of the problem as illustrated in Fig. 2. 



6 

 

Fig. 2. Game Processing Flow. 

As illustrated in Fig. 2, players perform their respective action at the same time, imply-

ing the possibility that one player can be put under attack even before he or she is ready 

to act. Thus, the faster the attack can start, the less likely our player will end up in a 

disadvantageous situation, which was why this factor should be considered as a priority 

to determine the potential of the action. 

Resulting state of the player under attack. Nonetheless, fast startup alone does not guar-

antee an excellent action since the opponent still has a chance to revenge in the next 

attack. A promising attack should be one that opens more opportunity for future attacks. 

In further details, it means that a good attack should lead the opponent into a vulnerable 

state in which it is difficult or even impossible for him or her to block the next one, 

forming a series of consecutive moves, namely combo [9]. In this particular challenge, 

the most known vulnerable state is the DOWN state – a state where the opponent is 

completely knocked out and became unable to retaliate. Hence actions that can result 

in the opponent’s DOWN state will be our first-class priority. 

Preselection. A further improvement is the preselection of a minimum set of actions 

based on their potential for speed improvement during the playtime. After that, an ad-

ditional reselection to further minimize the selected list will be conducted based on 

random game simulation and decide which actions to choose  according to its respective 

total damage for the opponent during the random games. An illustration can be shown 

as follows. 

List<Action> preselection(Int round1Size, Int round2Size) 

{ 

List<Action> firstRound = getAllActions() 

.sortedAscBy (action -> action.getPotential()) 

.toList() 

.subList(0, round1Size) 



7 

 

Map<Action,Int> damageByAction =  

simulateRandomGamesAndRecord(firstRound) 

 

List<Action> secondRound = firstRound 

.sortedDescBy (action -> damageByAction[action]) 

.toList() 

 

return secondRound 

} 

Upper Distance Analysis. Attacking is important, but another indispensable aspect of 

victory in a fighting game is the control of player movement, which usually replies on 

actual values. In order to make it generic to work in the LUD division, we define a 

much simpler strategy: attack or defend. In attack mode, our player will choose actions 

that get us as close to the opponent as possible. In defend mode, we will just choose 

actions that run away from the opponent. The threshold to determine whether we should 

attack or defend depends solely on the difference between our current HP and the op-

ponent HP as illustrated in the pseudocode below. This will be executed before all to 

filter irrelevant actions before selection. 

List<Action> upperDistanceAnalysis() { 

if (myHP – opponentHP >= UPPER_LIMIT) { 

 return defendActions() // actions that runs away 

} else { 

 return attackActions() // actions that get us closer 

} 

} 

The threshold is set to be an upper bound value, which can be any high enough value 

that if it is met, we are certainly going to win regardless of what happens afterward. 

Since such value is independent of the action data, it can be chosen generically. 

In addition to the above factors, each action will only be considered for selection if the 

current amount of energy permits it. Actions that require too much energy will be fil-

tered beforehand. Last, but not least, a simple minimax algorithm will be used to select 

those with the same priority and each action will only be selected if it can produce a 

positive impact on the opponent. The priority to select an action will be first, in those 

chosen in the preselection, followed by those with the largest potential. 

4.2 A brief overview of our optimized MCTS 

As stated in subsection 4.1, the core of our contribution is the intelligent search, not the 

MCTS since almost all MCTS-based solutions were just reusing the provided sample 

MCTS code with little to no improvement. Moreover, the sample provided implemen-

tation is a very standard one, hence an extensive description will not be included in our 



8 

paper. Further information can be found at [10]. Instead, in this section, we will just 

briefly review the key points of MCTS used in our program and briefly introduce our 

optimization. 

Monte Carlo Tree Search. MCTS is a simulation-based search algorithm. Like other 

algorithms, first it will search for the known best node, then it will extend the search 

tree from there. The best node is chosen in a way that balances both the depth (exploi-

tation) of the search tree and breadth (exploration) of opportunities and the way to 

achieve that is to use the famous Upper Confidence Bound (UCB) formula. The full 

form of UCB used for computing the potential of each node in our solution is as follows. 

 �̅� + 𝑐 × √
log2 𝑁𝑝

𝑁𝑐
 (1) 

, in which �̅� is the average number of wins, 𝑁𝑝 is the number of visits in the direct 

parent node and 𝑁𝑐 is the number of visits in the current node. 𝑐 = √2 is the exploration 

parameter that is used to balances between exploitation (�̅�) and exploration (√
log2 𝑁𝑝

𝑁𝑐
). 

In the context of our solution, each node is a game state. The root node is the current 

game state and all others are virtual nodes that will be created by game simulation. Each 

new node is created from the current node when we try to perform a different action. 

The tree branch will go deep until we can decide if the current state is a win or loss and 

then we can recursively recompute all information such as the number of wins and the 

number of visits from the current state up to root. The entire process is repeated until 

time runs out (1 frame = 
1

60
 second). The selected action is one that leads to the most 

visited direct child from root. The complete procedure can be summarized as follows. 

Action MCTS(Node rootNode) { 

Node node = rootNode 

while (node.isNotEndState()) ( 

if (node.areAllActionConsidered()) { 

node = findBestChildNodeByUCB(node)    

} else { 

Action action = node.pickAnyActionNotConsidered() 

node = createNode(node, action) 

} 

} 

while (node != null) { 

updateNumberOfWins(node) 

updateNumberOfVisists(node) 

node = node.getParent() 

} 

  

return findMostVisistedChild(rootNode).getAction() 

} 



9 

Optimization. Our improvement lies in the reduction in memory, which eventually 

leads to speed improvement as in the case similar to why insertion sort is faster than 

quick-sort for small lists of elements [11]. Each node in a standard implementation 

needs to keep track of both the actions that we have considered (simulated) and actions 

we have not, implying that we may require two arrays for storing them. That approach 

is used by most people since it is both intuitive and simple to implement. In our sub-

mission, we avoid the creation of the additional array by keeping track of only the num-

ber of unused actions. Every newly used action will be swapped in 𝑂(1) with the first 

action that is not yet used. By utilizing this trick, we manage to reduce the memory 

consumption by half and since the number of possible actions after various filters in 

subsection 4.1 is relatively small, the performance is significantly enhanced. Unfortu-

nately, this is not key to our success due to the choice of our programming language 

which will be explained in section 5. 

5 Evaluation 

5.1 Performance 

The first priority to evaluate a solution is naturally its performance. Fig. 3 illustrates the 

improvement of our solution before and after mixing our case analysis approach. 

 

Fig. 3. Performance before and after applying our case analysis approach 

The table on the left of Fig. 3 is our mid-term result against 5 other competitors in which 

we did not introduce the intelligent search. Albeit we did not have high expectation, it 

was still shocking that we were at the bottom of ranking in the LUD division at the 

beginning and even worse, we were knocked out by every other participant in every 

single game. However painful it was, it served well for us as a crucial step to highlight 

the brilliantness of our improvement as shown in the second table – our final result 

against 8 other participants, in which we climb straight to the top from the bottom. 

Being on the top of the ranking in both STANDARD and SPEED-RUNNING leagues 

demonstrate our performance. 

5.2 Stability 

The next key factor to evaluate our solution is stability which can be illustrated in Table 

3, showing instability among other participants. 



10 

Table 3. Ranking Instability. 

Solution STANDARD SPEED-RUNNING Ranking Change 

Our Solution 1 1 No change 

Thunder 2 5 -3 

SampleMctsAi 3 3 No change 
MogakuMono 4 2 +2 

JayBot_GM 5 4 +1 

SimpleAI 6 7 -1 

UtalFighter 7 6 +1 

MultiHeadAI 8 8 No change 

BCB 9 8 +1 

 

As can be seen from Table 3, most participants either perform too unstably or badly. 

Since SampleMctsAi belongs to the organizers, it is counted, implying that ours is the 

only stable solution that well-performed (first place for all). 

5.3 Remarks about MCTS Optimization  

As mentioned in the previous section, our solution is not only with one improvement – 

the intelligent search, but it also includes an optimization in MCTS. This subsection 

answers the question: Does it improve anything and why is it not key to the success of 

our solution? 

The problem originates from our choice of programming language for implementing 

this solution - Kotlin [12], a promising programing language on JVM, while other par-

ticipants all use Java, a much more mature language. In our submission, we chose Ko-

tlin for its expressiveness and beauty, but it was unexpected that Kotlin compiler is still 

too young to generate bytecode of the same quality as Java compiler. In our experiment 

after the contest, we translated the Java programs into equivalent Kotlin code and were 

surprised to see that the Kotlin version lost every single match despite the algorithm in 

use is the same. Therefore, even though our MCTS implementation is of higher quality 

compared to others, it is invisible from the competition results. 

Does our optimization really work? In our experiment, we compared MCTS pro-

grams with and without the optimization. With our optimization, it was still on the los-

ing side but could handle approximately 1 out of every 3 matches instead of failing 

every single time as the program without optimization. Regardless, this result demon-

strates that without our case analysis, we would have lost also in LUD division and that 

our intelligent search is truly effective. 

6 Conclusion 

In this study, we have contributed a promising solution for the general fighting problem 

via our submission to the Fighting Game AI Challenge 2018. Our solution is 



11 

combination of case analysis and Monte Carlo Tree Search that produces stable and 

remarkable results in the LUD division, the division closest to the general real-time 

fighting game. Unfortunately, we were unable to make a significant optimization in the 

MCTS and still rely on human wisdom to generate the heuristics for the intelligent 

search which, at the same time, opens a new direction for our future research. 

One possible direction for the future is to automate the generation of generic heuris-

tics and the second is to further optimize MCTS for solving this challenge. One prom-

ising possibility for the former is the use of Deep Learning and Neural Networks to 

learn and formularize the heuristics before the competition, but the challenge of such 

approaches is to construct a model that can ensure the genericness of the resulting heu-

ristics, meaning that it must be independent of actual values. Another approach to han-

dle the latter is to introduce memorization into MCTS as illustrated in the AlphaGo 

Zero paper [13], which may significantly improve both the quality and performance of 

the search tree. The downside is that such an approach may be incompatible since the 

performance of the Google machines running AlphaGo Zero is still largely outperform-

ing that of normal computers. Regardless, these are all promising directions, in which 

research towards real-time fighting games can evolve. 

References 

1. Chaslot, G., Bakkes, S., Szita, I., Spronck, P.: Monte-Carlo Tree Search: A New Framework 

for Game AI. AIIDE, The AAAI Press (2008) 

2. Nork, B., Lengert, D., Litschel, R, Ahmad, N, Lam, G. T., Logofatu, D.: Machine Learning 

with the Pong Game: A Case Study. EANN 2018, pp. 106-117 (2018). 

3. Campbell, M., Hoane, J., Hsu, F.: Deep Blue. Artificial Intelligence (2002). 

4. Silver, D. et al: Mastering the game of Go with deep neural networks and tree search. Nature, 

529 (7587), pp. 484-489 (2016). 

5. ‘Are processors pushing up against the limits of physics?’, 

https://arstechnica.com/science/2014/08/are-processors-pushing-up-against-the-limits-of-

physics, last accessed 21 Feb. 2019. 

6. Fighting Game AI Competition, http://www.ice.ci.ritsumei.ac.jp/~ftgaic/index-1.html, last 

accessed 21 Feb. 2019. 

7. 2018 Fighting Game AI Competition, https://www.slideshare.net/ftgaic/2018-fighting-

game-ai-competition?ref=http://www.ice.ci.ritsumei.ac.jp/~ftgaic/index-R.html, last ac-

cessed 21 Feb. 2019. 

8. Man-Je, K., Chang A: Hybrid fighting game AI using a genetic algorithm and Monte Carlo 

tree search. GECCO 18 Proc. of the Genetic and Evolutionary Computation Conference 

Companion, Kyoto, Japan (2018). 

9. Zuin, G., Macedo, Y., Chaimowicz, L., Pappa, G.: Discovering Combos in Fighting Games 

with Evolutionary Algorithms. GECCO'16, pp. 277-284, Denver, CO, USA (2016). 

10. James, S., Konidaris, G., Rosman: An Analysis of Monte Carlo Tree Search. Proceedings of 

the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) (2017). 

11. Heineman, G., Pollice, G., Selkow, S.: Algorithms in a Nutshell. O'Reilly Media. 2016. 

12. Jangid, M: Kotlin – The unrivaled android programming language lineage. Imperial Journal 

of Interdisciplinary Research 3 (2017).  

13. Silver, D. et al: Mastering the game of Go without human knowledge. Nature 550 (2017). 

https://www.slideshare.net/ftgaic/2018-fighting-game-ai-competition?ref=http://www.ice.ci.ritsumei.ac.jp/~ftgaic/index-R.html
https://www.slideshare.net/ftgaic/2018-fighting-game-ai-competition?ref=http://www.ice.ci.ritsumei.ac.jp/~ftgaic/index-R.html
https://www.slideshare.net/ftgaic/2018-fighting-game-ai-competition?ref=http://www.ice.ci.ritsumei.ac.jp/~ftgaic/index-R.html
https://www.slideshare.net/ftgaic/2018-fighting-game-ai-competition?ref=http://www.ice.ci.ritsumei.ac.jp/~ftgaic/index-R.html

