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Abstract— In this paper, we present an enhanced quantum-

inspired genetic algorithm (eQiGA) with a combination of 

proposed mechanisms: two search supportive schemes and 

artificial entanglement. This combination is aimed at balancing 

exploration and exploitation. Two schemes, namely Explore and 

Exploit scheme are designed with aggressive specific roles 

reflecting its name. Entanglement is considered to be one of the 

significant strengths in quantum computing aside the probabilistic 

representation and superposition. Hence we attempt to apply its 

concept as part of our strategy for its potential. In addition, two 

new sub-strategies are proposed: fitness threshold, and quantum 

side-stepping. The algorithm is tested on multiple numerical 

optimization functions, and significant results of improved 

performance are obtained, studied, and discussed. 

Keywords—quantum computing, genetic algorithms, search 

supportive scheme, numerical optimization, artificial entanglement. 

I. INTRODUCTION 

Quantum-inspired variant of evolutionary computation is an 

emerging research field attracting many researchers due to the 

promising strengths of quantum computers (QC). Those 

researchers have begun to unravel further potentials in our 

classical computers by studying the aspects of quantum 

mechanics and applying its concepts to existing evolutionary 

approaches. A survey by Zhang [1] explained in detail about the 

current trend of the quantum-inspired evolutionary algorithms 

(QEA) that many had claimed, tested and shown good results 

over conventional methods. However, it is also pointed therein 

that fundamental problems in heuristic search are still present 

even in notable works by Han and Kim [2-4]. Specifically, 

problems such as the premature convergence was present in [2] 

but apparently resolved later in [3-4], and the exploration and 

exploitation dilemma is still present in all available methods as 

it still cannot be solved but only minimized. 

For the balance between exploration and exploitation, 

Edelkamp et al. [5] argued that a policy to ensure convergence 

is difficult to formulate because it remains hard for computers 

to answer “when is the right time to explore or exploit?.”  Such 

a policy’s goal is not only just about the amount of time spent 

in exploring or exploiting, but also about its search behaviour 

whether it is well-defined or suited for the purpose of explore 

or exploit. In other words, those policies have a direct effect on 

an algorithm’s performance in terms of convergence speed and 

stability. 

In this paper, as an enhancement to quantum-inspired genetic 

algorithms (QiGA), we propose two supportive search schemes 

(TSSS), i.e. the “explore” and “exploit” schemes which are 

explicitly used along with two sub-strategies in order to 

alleviate the aforementioned problem. Those sub-strategies 

proposed here are the fitness-threshold (FT) strategy which is 

responsible for determining when to switch between the two 

schemes, and the quantum side-stepping (QSS) strategy for 

escaping local optima. In particular, these sub-strategies are the 

result of extensive study of QiGA’s search behaviour. 

Furthermore, in order to bring the benefits of entanglement 

in QC, we introduce another new mechanism called the 

artificial entanglement (AE). AE is a newly designed 

mechanism that conforms to a core principle of standard 

entanglement in QC and can also serve as a platform for more 

diverse strategies with the benefit of entangled solutions. Here, 

we aim at achieving a solution from a different angle through 

AE because of its correlation with the original solution. 

Detailed implementation of AE is described in Section IV.  

In short, the contributions of this paper are summarized as 

follows: 

1. TSSS (“explore” and “exploit” schemes) that have 

very specific roles, in which explore scheme offers 

very wide and guided search that it is able to land 

on a potential optimum quickly while exploit 

scheme is a focused search where it is able to drill 

down into an identified optimum;  

 

2. AE that creates artificially entangled solutions 

whose conform to two core principles of 

entanglement: correlated values and rotational 

behaviour, which gives us a unique approach 

towards the true solution; 

 

3. FT that serves as a bridge between the need of 

explore and exploit; 

 

4. QSS that allows an efficient escape from a local 

optimum to a neighbour point discovered by AE. 

Our eQiGA and QEA implementations in Java can be found at: 
http://www.ice.ci.ritsumei.ac.jp/~ruck/downloads.html 
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II. PREVIOUS WORKS 

Not long after QC was first introduced by Manin [7], 

Feynman [8], and Deutsch [9], one of the early QiGAs was 

proposed by Narayanan [6]. Although at that time, his aim was 

apparently not to address those issues in heuristic search but 

rather, he was trying to create an awareness and introduce a 

QiGA paradigm. In his work, he demonstrated his proposed 

QiGA in Travelling Salesman Problem (TSP) and the results 

obtained surpassed conventional methods. This marked the 

beginning where quantum-inspired techniques began to receive 

attention from researchers.  

A notable work by Han and Kim [2-4], who proposed the 

first QEA, demonstrates the applicability in another well-

known problem domain called the knapsack problem (KP). In 

their paper, the emphasis was more on the study of 

characteristics of the proposed QEA. Extensive experiments 

were carried out with many different sets of parameters, and 

particularly the Q-gate or rotation gate angle setting were 

heavily analysed. They further suggested that because of the 

inherent probabilistic mechanism of QEA, it naturally leads to 

a good balance between exploration and exploitation. Based on 

the positive results of QEA, they concluded that the proposed 

QEA was effective and applicable in combinatorial problems. 

In [3-4], the QEA was tested in numerical optimization 

functions. As a set of improvements to the first version in [2], 

Hє gate was introduced to tackle the issue of premature 

convergence by preventing a Q-bit away from 0 or 1 to a certain 

degree and Shannon entropy is used to investigate the 

exploration strategy. It was said that in [3], neither the QEA nor 

EP (Evolutionary Programming) algorithms were able to 

converge in Rosenbrock function with the dimension of 30. 

Latest work of Han and Kim in [4] studied the behaviour of a 

single individual and demonstrated some considerably good 

results in Rosenbrock, Step, and Shekel function on low 

dimensions (2, 5, and 2 respectively). However, despite the 

good results, clearly the exploration and exploitation issues in 

general still remain at large. In this respect, we aim to further 

tackle the issues as we believe that it strongly contributes to 

eQiGA’s performance. 

III. BASIC CONCEPTS AND INSIGHTS 

As a preliminary portion of this paper, this section describes 

the basic concepts of eQiGA and some original insights that 

inspired this research.  

A. Representation 

Similar to other proposed quantum-inspired algorithms, the 

smallest unit of information is stored in two-state QC and is 

called a quantum bit or qubit [11]. A qubit may be in state “1” 

or “0” or both at the same time, which is called the 

superposition phenomenon where, the qubit state can be given 

by 

Ψ = α |0⟩ + β |1⟩ ,  (1) 

 

where α and β are complex numbers satisfying the following 

constraint 

 

|α|2 + |β|2 = 1 ,  (2) 

 

In other words, |α|2 and |β|2 give the probability that the qubit to 

be found in the state of 0 and 1, respectively. 

In a 2D representation, the above constraint can be regarded 

based on a simple geometric definition where |α|2 is cos2(θ) and 

|β|2 is sin2(θ). Hence, in an equivalent form it can also be said 

as  

 

cos2(θ) + sin2(θ) = 1,  (3) 
 

In quantum-inspired algorithms, Han and Kim [2] introduced 

the term “Q-bit” for the probabilistic representation, and it is 

widely used across many of their other proposals instead of 

qubit. Hence, as follows: we also use the same definitions of Q-

bit representation. 

 

Definition 1: In eQiGA, Q-bit is defined with a pair of 

numbers that represent the probabilities of (α, β) in the form of 

 

  [
𝛼

 𝛽 ],    (4) 

 

where |α|2 + |β|2 = 1. This theoretical composition of 

probabilistic representation allows the possibility of the bit 

being in the state of “1” and “0” at the same time, the 

phenomenon being called “superposition”. 

 

Definition 2: Each chromosome (individual) consists of an 

array of n Q-bits where n is the number of Q-bits predefined the 

user. A chromosome can be defined as 

 

[ 
𝛼1 𝛼2 𝛼3 ⋯ 𝑎𝑛

𝛽1 𝛽2 𝛽3 ⋯ 𝛽𝑛
 ],  (5) 

 

where |αi|2 + |βi|2 = 1, i = 1, 2, …, n. Theoretically speaking, this 

kind of probabilistic representation promotes parallelism. 

Consider a three-Q-bit representation of a chromosome where 

the possible states would be |000⟩, |001⟩, |010⟩, |100⟩, |110⟩, 
|101⟩, |011⟩ and |111⟩. Each of these states has a probability 

that the chromosome might result in any state when observed. 

Therefore, a change in the probabilities, also means altering 

many solutions at the same time. Such phenomena, 

theoretically allows the computational speed to be 

exponentially faster than classical algorithm [10]. However, 

such is true for real QC but in practice, this approach result in 

slightly higher computational time compared to simple 

conventional methods due to its complexity in deciphering or 

observing its values.  
However, the concept does have its advantages; in terms of 

the population size, e.g. even as small as one is sufficient 
compared to conventional GA methods that usually have 50-100 
for ensuring diversity. In a sense, lower population means lower 
resource consumption, which also means faster computation. 
Aside the conceptual advantages, it is also worthwhile to 
understand eQiGA’s search behavior in order to further tune or 
manipulate it to its best. 

 



B. Procedural Flow 

Our eQiGA structure is an enhanced version of the basic 

QiGA proposed by Talbi et al. [10]. To complement with our 

proposed methods, we have modified the basic initial QiGA 

structure, to which is described as in Fig. 1. The procedure 

begins with the initialization phase where the population of 

chromosome(s) is initialized with random probabilities, after 

which they are measured and the best solution is kept as a 

reference for interference (or rotation) phase. As mentioned 

above, the algorithm only requires a small population size from 

1 to 4. 

The recombination phase begins with the interference 

operation then followed by quantum crossover where in this 

case, it is different than conventional method because it 

performs crossover by using combination-style of pairing when 

selecting parents. For example, if the population size is 4, then 

since the order is not important, the resulting number of 

chromosomes would be 12 offspring added with 4 initial 

chromosomes resulting in 16 chromosomes. Additionally, we 

have made a simple modification to the crossover method to 

change its direction so that the information of dimensions (in 

the case of numerical optimization) between the parents are 

shared instead of being drastically modified. Illustration in Fig. 

2 describes the direction change. Following at the end of 

crossover, quantum mutation similar to implementation by 

Wang et al. [12] is performed. Then, quantum shift operation is 

performed, and lastly, measurement of the resultant 

chromosomes is carried out, by which, in real QC, this is 

supposed to ‘collapse’ the qubit into a single state in order to 

obtain a readable value. This destroys the superposition, but in 

our case, since this algorithm is executed using classical 

computers, it is the best interest that we should keep the 

solutions as it is for future operations [10]. After measurement, 

a new population will be selected based on the ranking of top 

fittest and the last will be randomly selected in order to maintain 

its diversity. 

C. Rotation Gate (Quantum Interference) 

A quantum unitary operator which is the rotation gate is used 

in the interference phase as follows:  

 

𝑈(𝜃) =  [
cos(𝜃) −sin(𝜃)
sin(𝜃) cos(𝜃)

],    (6) 

 

where θ is the rotation angle and its direction is determined 

based on the corresponding bit value of the best solution so far 

and the current values of the Q-bit. For determination of the 

rotation’s direction, we adopted a simple lookup table from 

Talbi et al.[10]. An example of interference is shown in Fig. 3. 

D. Entanglement 

Quantum entanglement in QC occurs when one qubit is 

entangled with another qubit. It was first called as an Einstein, 

Podolsky, Rosen (EPR) paradox [13] for which Erwin 

Schrödinger then coined the term “entanglement” to describe 

the correlations between the particles [14]. Based on the 

quantum theory by Albert Einstein, the change that caused by 

 

 
 

Fig. 1. Enhanced Structure of eQiGA with Artificial Entanglement, 

  red texts indicate modified and added processes 

 

       
 

Fig. 2. Modified direction of Quantum Crossover based on the 

  original concept by Talbi et al. [10] 
 

entanglement is faster than the speed of light. Such is true 

because of its principle that when a change happens to a qubit, 

entangled qubits will undergo immediate change as well. 

Although this phenomena is impossible to accurately replicate 

or implement in classical computers, we exploited the concept 

and apply it as part of our strategy. We call it the artificial 

entanglement (AE) which is discussed in Section IV. 

IV. METHODOLOGIES 

In this paper, we present a combination of two new main 

strategies and two new sub-strategies. They are described in the 

following. 



       
 

Fig. 3. Example of a Q-bit being interfered / rotated 
 

A. Two Supportive Schemes defined, Explore and Exploit 

There are many other proposed algorithms suggesting 

adaptive strategies for their parameters such as IQGA in [12] 

where the rotation angle is adaptive. However, we find that 

rotation angle alone is not enough to define the behavior of the 

search, and the amount of time spent on adapting may be 

unnecessary if adaption cannot be achieved within very short 

time. Therefore, we proposed the schemes in Table I. 

Referring to Table I, we have now defined the “Local Best 

Solution” (LBS) and “Global Best Solution” (GBS). LBS refers 

to the best fittest among the chromosomes in each generation 

while GBS refers to the overall best fittest so far. The schemes 

are tested and performed very well up to their fundamental 

purposes which are to explicitly explore and exploit. 

Exploration scheme was able to search vastly for a point close 

to a local or global optimum quickly and exploitation scheme 

basically helps it to dive down into the optimum (local or global) 

effectively. Although we have two effective schemes that have 

explicit search behaviour, but there is also a need for a 

mechanism to determine how and when to switch between the 

two schemes. To address this, we further propose the Fitness 

Threshold which is discussed in Section IV (C). 

TABLE I 

SEARCH SUPPORTIVE SCHEMES FOR EXPLORE AND EXPLOIT 

  

Explore 

 

Exploit 

Angle 
 

π / 9 

 

π / 180 

Interference 

based on 

Local 
Best Solution 

Global  
Best Solution 

Shift Rate 0.5 0.2 

 

B. Artificial Entanglement (AE) 

We designed AE based on a principle of entanglement that 

entanglement is a physical phenomenon that occurs when pairs 

or groups of particles are generated or interact in ways such that 

quantum state of each particle cannot be described 

independently. Any physical changes, such as spins or 

measurements performed on entangled particles are found to be 

correlated. For example, if a pair of particles is generated in 

such a way that their total spin is known to be zero if a clock-

wise rotation is performed on a particle, the entangled particle 

will found to be rotating counter-clockwise. Based on this 

characteristic, we apply the clockwise and counter-clockwise 

rotational behavior to define the correlations of our entangled 

Q-bits. Such behaviour is depicted in Fig. 4. 

 To achieve this, we begin by creating n number of 

artificially entangled populations where each Q-bits are 

entangled in the same position as in the quantum genes. The 

generated entangled populations have to be related to the 

original, by which we have the freedom to formulate an 

approach on how is it related to the original. In our case, we 

chose to start with simple method by flipping the amplitudes 

between α and β from second Q-bit onwards because for 

example, considering if we use 25 Q-bits size, the first Q-bit 

will act as the sign for +ve or -ve. This process coincides with 

“Generate Entangled Population(s)” in Fig. 1.  

 

 
 

Fig. 4. Entangled Q-bit being initialized with flipped probabilities 

  and example of rotational behaviour 
 

To preserve the integrity of the entangled populations, no 

other operations such as quantum crossovers, quantum 

mutations and quantum shifts are allowed to be applied upon 

them but only the after-effect of the quantum interference 

which is done on the original population. Furthermore, in order 

to make the interference more meaningful on the  

entangled populations because there is no point if they are 

rotating at the same angle even if they are on different quadrant, 

therefore we introduce “reversed rotational angle sensitivity” to 

de-amplify the original interference angle acted upon them as 

the original values are considered rather large. In this case, the 

rotational angle for entangled populations are defined as: 

 

𝜃𝑒𝑖
=  

𝜃

𝑖
,    (7) 

 

where i is the ith entangled population. Quantum interference on 

entangled populations are performed in addition to existing 

quantum interference hence we described it as “Improved 

Interference” in Fig. 1. To optimize the functionality of this 

mechanism, we suggest additional two parameters: 

PmeasureEntangled for probability to observe the entangled solutions 

and PswapEntangled for swapping the original chromosome with 

entangled chromosome if it is found to be a better GBS during 

measurement phase. Additionally, AE is also used to discover 

reliable QSS points wherein upon measurement it checks with 

another parameter DsideStepThreshold that if it is within the threshold 



then add into the pointList (See Algorithm 1). As of now, there 

are two major roles for AE which are: finding potentially better 

GBS with a chance to swap and discovering reliable QSS points.  

C. Fitness Threshold (FT) 

As we mainly testing on numerical optimization functions, 

we manually defined a fitness threshold for which to tell the 

eQiGA when to switch to exploitation. In other words, once the 

evaluated fitness is found to be within the threshold, it will 

immediately switch to exploitation and “dive” into the assumed 

optimum. A simple illustration in Fig. 5 describes the example 

behaviour of FT. 

 

 
Fig. 5. An example describing how the algorithm would change its  

        scheme 
 

Although, we do not expect this method to be fool-proof as 

this approach is only effective if the “objective” is known. If it 

were to search an unknown space where the “objective” is not 

known, it may become difficult to converge. Hence, we are 

seeking a better mechanism that is able to determine the point 

of change by itself of which the theoretical implementation is 

discussed when we conclude this paper in Section VI. 

D. Quantum Side-Stepping (QSS) 

There was another issue that had been evidently present in 

eQiGA based on our initial tests and QEA in [3] is that it tends 

to get trapped in a local optimum or due to sensitivity of a 

function such as the Rosenbrock function as explained by Han 

and Kim [3] and unable to escape.  To resolve this, we proposed 

the QSS. On contrary to back-tracking or back-stepping, we 

called this approach as side-stepping because of its 

characteristics where it does not fall back to a point based on 

history of the search but instead, it diverts the search focus to a 

proximity point by directly adapting the GBS to the neighbour 

solution. It then, guided by the newly adapted GBS, it will 

approach towards convergence “from a different direction”. 

Proximity points are discovered using the mechanisms of AE 

because based on experiments, we find that the points are more 

reliable for a “different direction” and it is very unlikely to 

return to the same trap as compared to trace-back points. The 

QSS only occurs during Exploit scheme due to its narrow and 

focused search ability, therefore unable to escape. Once QSS 

occurs, eQiGA will switch back to Explore scheme if it is 

outside of the FT. To keep the discovered points, we maintain 

a small list, pointList that holds up to ten points which are 

validated as the GBS gets updated for its validity in distance. 

Procedure of QSS can be seen in Algorithm 1. 

 

Algorithm 1: quantumSidestep(pointList) 

 

/*pointList is populated by AE*/ 

/*trapped_cost derived from number of function calls while 

GBS remained the same */ 

if globalBestUpdate is false then 

    trapped_cost  add 1 

else 
    trapped_cost  reset trapped cost back to 0 

end if 

 

/*validate pointList to ensure the points are within distance 

 with GBS*/ 

For i = size of pointList to 0 

    if fitness of pointList(i) - fitness of GBS > 

   d_sideStepThreshold then 

    remove pointList(i) 

    end if 

end for 
 

if trapped_cost > trapped_threshold then 

    if size of pointList > 0 then  

        globalBest  get a random point from pointList  

    end if 

    trapped_cost  reset trapped cost back to 0 

end if 

return 

 

V. PERFORMANCE EVALUATION AND DISCUSSION 

In evaluating our proposed algorithm, we performed 

extensive experiments to verify its performance, and put it on 

comparison with Han and Kim’s QEA [3-4] as we had 

successfully implemented it and reproduced similar reported 

results. For the ease of reference, we use the same comparison 

units as in their work which are the search cost, number of times 

of the test functions being called in each trial, and the mean (m.), 

standard deviation (σ) and success rate (r.) are collected. We 

used the following numerical optimization functions in our tests: 

 

Rosenbrock Function (De Jong 2, fRos): Minimize 

 

𝑓(𝑥) = ∑ (100(𝑥𝑖+1 −  𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2)𝑁−1
𝑖=1 , (8) 

 

where -2.048 ≤ xi ≤ 2.048. The global minimum value is 0.0 at 

(x1, x2, x3, x4 … xN) = (1, 1, 1, 1….1). 

 

Step Function (De Jong 3, fStep): Minimize 

 

𝑓(𝑥) = ∑ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑥𝑖)𝑛
𝑖=1 ,             (9) 

 
where -5.12 ≤ xi ≤ 5.12. The global minimum value is at -5 
multiplied with n dimensions for all -5.12 ≤ xi < -5.0. 



Shekel Function (De Jong 5, fShekel): Minimize 

 

𝑓(𝑥) =  
1

1

𝑘
+ ∑ 𝑔𝑗

−125
𝑗=1  (𝑥1,   𝑥2)

,  (10) 

 

where gj(x1, x2) = cj + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
62

𝑖=1  , -65.536 ≤ xi ≤ 65.536, 

K = 500, cj = j, and [aij] is 

 

[
−32 −16 0 16 32 −32 −16 ⋯ 0 16 32
−32 −32 −32 −32 −32 −16 −16 ⋯ 32 32 32

] 

 

The global minimum is 0.998 at (x1, x2) = (-32, -32). 

 

For fairest possible comparisons, we set both our proposed 

eQiGA and QEA domain variables (refer Table II) to be the 

same, such as the Q-bits size is 25 where the first Q-bit is the 

sign and the maximum number of trials are 100, and 50 

respectively. As for the termination condition, we adopted 

value-to-reach (VTR) [15] by which the algorithm terminates 

once the fitness reaches 1e-6. However, given the circumstance 

that each function’s global minimum may not necessary be f = 

0, the initial VTR of 1e-6 can be applied to many functions such 

as Sphere, Rastrigin or ill-scaled Rosenbrock in general but in 

our case, it is adopted accordingly for fStep and fShekel.  

TABLE II 

DOMAIN (PROBLEM) VARIABLES 

Q-Bits Size 25 

Dimension, N 30 (2 for fShekel ) 

Termination Condition, VTR 

(OR Search Cost > 2,000,000) 

Rosenbrock, f < 1e-6 

Step,             f = -150.0 

Shekel,         f < 0.9986 

 

As for algorithm-specific parameters, Table III and Table IV 

defines the values which we used for our experiments. The set 

of parameter values are empirically chosen as a result of fine 

tuning where they reflect the best performance by far of both 

algorithms based on preliminary testing cases. Preliminary tests 

for QEA include parameters proposed by Han and Kim in [3] 

and [4]. Interestingly, the ideal population size of both 

algorithms is the same which is 2. For eQiGA, it is significant 

that it is more than 1 because of Quantum Crossover advantage. 

TABLE III 
EQIGA PARAMETERS VALUES 

Quantum Crossover Rate 70% 

Quantum Mutation Rate 30% 

Quantum Mutation Threshold 5% 

Quantum Shift Rate Based on TSSS (Table I) 

Rotation Angle, θ Based on TSSS (Table I) 

# of Measure 1 

# of Entangled Populations 3 

PmeasureEntangled 1% 

PswapEntangled 50% 

DsideStepThreshold 25.0 

VtrappedTheshold 5000 

Fitness threshold 

(Problem-Dependent) 

Rosenbrock: 2.0 

Step:             -135.0 

Shekel:          1.5 

TABLE IV 

QEA PARAMETERS VALUES 

Global migration period 100 

Local group size 2 

ε for Hε gate 0.01 

# of Measure 1 

Rotation Angle, θ 0.04π 

 

Gray coding was used for QEA, but not for eQiGA.  

Table V shows the result of the experiments where direct 

comparisons are made. Based on the results shown, at a glance, 

we can see that our proposed approach gave promising results 

over QEA: a very significant achievement for fRos and fStep as 

previously, it was reported by Han and Kim [3] that no 

algorithm was able to solve fRos with N = 30, and 57% 

improvement in terms of mean for fShekel. In the case of QEA, it 

is still unable to converge in fRos after 2,000,000 evaluations. 

Analyzing deeper into the overall results of eQiGA, we noticed 

that the standard deviation values are considerably high. This is 

because in certain trials of eQiGA, the algorithm was able to 

solve the problem very quickly while in some required longer 

time to reach VTR. 

We first thought if this high standard deviation issue could 

be due to QSS, which is why we separated the trials to 

investigate; however that does not seem to be the case. Based 

on the QSS occurred and No-QSS occurred results of fRos in 

Table V, it appears to be stable although the results of QSS 

occurred shown to be higher than cases of No-QSS, it is only 

natural because of the QSS mechanism. However, looking at 

that the values in No-QSS occurred cases indicate that the 

proposed schemes are indeed effective in solving the problem 

within short time. Also, if we consider the cases in fStep and 

fShekel, QSS did not trigger at all and the standard deviation is 

still high. We believe that it may be due to the FT mechanism 

that serves as a bridge to switch between the two schemes by 

which we aim to improve with a smarter mechanism.  

In a minor comparison with CEP [16] variant such as 

Simulated Annealing (SA), eQiGA appeared to be converging 

slightly slower on simple problems such as the Shekel function 

(sample results with same dimension can be observed in [4]). 

This could be explained that since the proposed method has the 

characteristics of aggressive exploration, it has a possibility of 

overstepping some potential solutions nearby. SA is considered 

as a CEP [16] which is known for good at searching small local 

neighbourhood. However, even so, compared with the same 

FEP [16] variant, eQiGA still managed to achieve better results, 

which is worth further investigating of its behaviour.  

In verifying eQiGA’s search behavior, based on the 

convergence of eQiGA in Fig. 6, it is clear that it begins with 

an aggressive exploration and then followed by intense 

exploitation. Aggressive exploration that is guided by LBS 

limits the randomness of the search, which in a sense, it scans 

the area around the LBS rather than giving completely random 

solutions. On contrary to conventional GA, with no elitism is 

employed, LBS changes drastically in every generations, as 

compared to GBS that remains the same until a better solution 

is found. The reasons why we differentiate the focus of the 

quantum interference of which solution to use as a lead example 



TABLE V 

EXPERIMENTAL RESULTS OF EQIGA FOR TEST FUNCTIONS (8) – (10) COMPARED WITH RESULTS OF HAN AND KIM’S QEA 

 
m. σ r. m. ending 

fitness 

f Ros  

(De Jong 2) 

eQiGA 16637.2 12161.2 100/100 4.2E-07 

QEA - - 0/100 1.894 

f Step 

(De Jong 3) 

eQiGA 2240.1 1749.5 100/100 -150 

QEA 61413.6 54865.0 100/100 -150 

f Shekel 

(De Jong 5) 

eQiGA 2564.5 1719.0 100/100 0.9983 

QEA 5944.5 10511.5 100/100 0.9982 

 
 
Fig. 6  A convergence sample of a single trial in eQiGA with 

 fitness recorded every 100th search cost in fRos 

 

for the intended distinct behaviour of explore and exploit are 

simply to encourage better diversity of the approach towards 

the true solution and avoid cases of premature convergence. 

Additionally, PmeasureEntangled and PswapEntangled are carefully 

selected from extensive experiments with different 

probability rates. To our findings, entangled chromosomes do 

occasionally produce better solutions. However, swapping 

with high frequency has a high tendency of landing in a local 

optimum based on our experiments while occasional swaps 

encourages faster convergence in general as compared to 

experiments without swapping at all. In other words, even if 

the swaps are only occasional, it is still able to make a good 

leap towards the global optimum. The act of measuring the 

entangled chromosomes has a slight trade-off for 

performance as it consumes search cost to evaluate the 

measured solutions. Therefore, since there is no need for 

frequent swapping, we chose a very low probability rate to 

trigger the measurement of the entangled chromosomes and 

still maintain the exclusive benefits of the AE. 

VI. CONCLUSION AND FUTURE WORK 

This paper presents a novel set of methods that are proven 

to outperform QEA based on the results obtained. Although, 

there are still remaining issues that we wish to address such 

as the better solution for FT so that it is able to determine the 

strategy change by itself and reduce number of user-

controlled parameters. AE is a potential platform for better 

improvements as it still has many aspects that can be 

manipulated. In particular, the results have demonstrated the 

effectiveness of the proposed methods in terms of 

convergence speed and certainly further alleviated the 

fundamental problems of heuristic search mentioned in 

Section I.  
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