
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Fighting-Game Gameplay Generation Using
Highlight Cues

Ryota Ishii, Keita Fujimaki, Ruck Thawonmas, Senior Member

Abstract—In this paper, we propose a fighting game AI that
selects its actions from the perspective of highlight generation
using Monte-Carlo tree search with three highlight cues in the
evaluation function. The intended use of this proposed AI is to
generate gameplay in live streaming platforms such as Twitch and
YouTube where a large number of spectators watch gameplay to
entertain themselves. A gameplay analysis and user study are
conducted using FightingICE, a fighting game platform in an
international fighting game AI competition. Results show that
gameplay generated by two AI players of the proposed method
has more promising characteristics than not only gameplay
generated according to an existing method but also gameplay
by the top two AI players in the 2019 competition and that it is
more entertaining than the latter gameplay.

Index Terms—Monte-Carlo tree search, live streaming, high-
light generation, fighting game AI, FightingICE

I. INTRODUCTION

In recent years, live streaming platforms such as Twitch
and YouTube have been increasingly popular. A large group of
spectators belong to “Let’s Play” communities [1] who watch
gameplay videos to entertain themselves. As a result, this type
of spectators has gained a lot of interest by researchers in
various areas.

Recently, Thawonmas and Harada proposed a concept called
procedural play generation (PPG) [2]. Their goal is to auto-
matically generate gameplay according to spectators’ prefer-
ences. PPG requires a system that analyzes and recommends
gameplay and a mechanism or AI that generates various kinds
of gameplay which entertain different types of spectators. In
our previous work on PPG, a method was proposed using
Monte-Carlo tree search (MCTS) [3], [4] to generate playing
styles [5] in a fighting game. We also focus on the AI part for
the fighting game genre in this work.

In this paper, inspired by existing highlight generation meth-
ods that select exciting scenes for sports spectators, we propose
a fighting game AI for generating entertaining gameplay where
a combination of highlight indicators or cues is used in the
evaluation function of MCTS. In particular, to increase the
entertainment of resulting gameplay, we aim at solving an
issue residing in our previous AI [6] that it was strongly biased
in its action selection.

This work was supported in part by KAKENHI (19K12291). R. Ishii is now
with Hitachi Channel Solution, Corp. He was with the Graduate School of
Information Science and Engineering, Ritsumeikan University, Shiga, Japan,
where K. Fujimaki is currently with. R. Thawonmas is with the College
of Information Science and Engineering of the same university. (e-mail:
ruck@is.ritsumei.ac.jp)

Manuscript received mmmm dd, yyyy; revised mmmm dd, yyyy.

The main contribution of this paper is that the aforemen-
tioned issue is solved. From experimental results, gameplay
generated by the proposed AI has more variation in action
execution than gameplay by our previous AI. It is also more
entertaining than gameplay by top-performance AIs from the
2019 Fighting Game AI Competition (FTGAIC)1, which are
used as a benchmark.

II. RELATED WORK

A. Monte-Carlo Tree Search in Fighting Games

Although AIs using deep learning techniques [7-9] have
been recently published, MCTS, combining a Monte-Carlo
method and game tree search using a given forward model, is
a popular technique to implement a fighting game AI. Recent
high-performance entries in FTGAIC were based on a sample
AI [10] using the open loop approach [11] of MCTS. In the
sample AI, to cope with the real-time property of the game,
only actions of the AI player of interest are considered in the
tree while actions of the opponent are randomly generated. In
this work, we follow this recipe and use a separate clone of
the proposed MCTS to control each AI player.

In the open-loop approach, a node stores the statistics, used
in node selection described below, of a series of actions or
a path from the root node to that node. As with other game
tree search approaches, however, the root node represents the
current game state defined by information such as the Hit-
Point (HP), energy, coordinates, and action of each character
and the game remaining time. An edge represents the on-
going execution of an action of interest. Four steps exist:
selection, expansion, simulation, and backpropagation. They
are described in the following, respectively.

1) Selection: Nodes are selected from the root node until
a leaf node is reached according to a selection criterion in
use. We use Upper Confidence Bounds (UCB1) [12], which
is widely used for this task, defined by the following equation:

UCB1i = Xi + C

√
2 lnN

Ni
(1)

where Ni is the number of times node (action) i has been
visited, N is the number of visits to its parent node, and C is
a constant. In addition, Xi is the average evaluation value of
the path from the root node to node i:

Xi =
1

Ni

Ni∑
j=1

Evalj (2)

1http://www.ice.ci.ritsumei.ac.jp/%7eftgaic/
978-1-7281-1884-0/19/$31.00 ©2019 IEEE

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

where Evalj is an evaluation function returning a reward value
gained in the jth simulation from the perspective of the AI
player. Note that every node of the tree contains the UCB1
value and a counter counting how many times it has been
visited. In this work, the selected path is the one that contains
the nodes with the highest UCB1 value, from the root node
until a leaf node.

2) Expansion: After a leaf node has been reached in the
Selection step, if the number of times it has been explored
exceeds a threshold Nmax and the depth of the tree is lower
than a threshold Dmax, all of its child nodes are created at
once from it. Note that the initial tree consists of the root node
and all of its direct child nodes.

3) Simulation: A simulation of the length of Lsim is
performed by sequentially executing all the actions in the
selected path while the opponent’s actions are chosen for
execution at random. This is done to prevent both AI players
from behaving similarly since they separately use the same
MCTS mechanism and at the same time to make the branching
factor more manageable. If Lsim has not passed yet after those
actions of the AI player have been executed, a rollout will
be carried out until Lsim runs out using randomly selected
actions. At the end of each simulation, the character’s Evalj
is calculated. Note that an opponent model can be employed to
select the opponent’s actions when the AI player fights against
another AI player controlled by a different mechanism.

4) Backpropagation: The value of Evalj obtained in the
Simulation step is back-propagated from the leaf node to the
root node during which the UCB1 value at each node along
the path is also updated accordingly.

MCTS repeats the above four steps until a given time limit,
Tmax, is reached. An action is then chosen among all of the
direct child nodes of the root node as the next action according
to a given recommendation policy. In this work, it is action i∗

that has the highest Xi. As done in the open-loop approach,
the chosen child node will be used as the next root node,
now representing the state after the action is executed, and its
sibling nodes will be pruned.

B. Highlight Generation

With a rapid increase in sports broadcasting, it is necessary
to generate a highlight that allows audiences to see exciting
scenes at their convenient timing. However, manual generation
of highlights is time consuming, so a number of automatic
methods for generating highlights have been proposed. Typi-
cally, scenes are evaluated based on several cues, and scenes
with high evaluation values are selected for a highlight. For
example, for boxing, a highlight can be generated based
on the camera-flash timing and the distance between both
players [13], i.e., a set of scenes with a close distance during
flash light becomes a highlight. Because gameplay in our
work is not generated while spectators are watching the game
together with some also taking photos on the same location,
like a boxing stadium, the camera-flash timing cue cannot be
used in our work.

Recently, a method was proposed that generates a high-
light for basketball based on five cues [14]: “Audio,” “Score

Differential,” “Player Ranking,” “Basket Type,” and “Motion,”
described in the following. Audio assesses scenes according to
the loudness of spectators and commentators. Score Differen-
tial considers that scenes with a narrow gap in score near the
end of the game are exciting. Player Ranking selects scenes
where a shot is done by a high-ranking player. Basket Type
ranks scenes according to their scoring shot types. Motion
prioritizes baskets with high camera motion and player motion,
measured through optical flow. Due to having no spectators
on-site, the Audio cue cannot be used. The concept of Player
Ranking is not applicable either since in our work a separate
clone of the proposed MCTS is used to control each AI player.
The Motion cue is interesting. However, calculating optical
flow in real-time for each MCTS simulation is not viable,
so this cue is not considered in our work. Worth mentioning
is more recent work by Ringer and Nicolaou [15] that takes
into account information on streamers’ face and audio, which
cannot be applied to our work.

Our work differs from the previous studies on highlight de-
tection or generation in that we focus on gameplay generation
through highlight analysis with cues inspired by some of those
in the aforementioned previous work, especially, the distance
cue [13], and both Score Differential and Basket Type [14].

C. FightingICE

FightingICE is a real-time 2D fighting game platform used
in the aforementioned FTGAIC and for research [5-10,16-25].
In FightingICE, a round lasts 60 seconds, and the game is
rendered at 60 frames per second. Due to receiving a delayed
game state from the system, an AI player does not precisely
know the timing that it can perform its next action and hence
it has to decide and input an action every frame, by which the
previous action awaiting execution will be overridden. The
HP for both characters is initially set to HPmax and decreases
when a character of interest is hit. A round ends when the
fight is conducted for 60 seconds or the HP of at least one of
the two characters becomes 0. The player of the character with
the larger remaining HP at the end of a round is the round’s
winner.

FightingICE has 56 actions of five categories: basic,
movement, guard, recovery, and skill. Because basic ac-
tions represent neutral postures and recovery actions are au-
tomatically performed after the character has been hit by the
opponent or after landing from a jump, only actions of the
other three categories are typically used in AI players. Worth
noting is that skill actions, used to attack the opponent, have
different execution times.

For the energy of each character, it is initially set to 0 and
has a maximum value of 300. A certain set of skill actions
consumes energy to execute. For some skill actions, the energy
of a character executing any of them will be increased when
the action hits or is guarded by the opponent. When a character
of interest is hit by some skill actions, its energy will also be
increased. Please see the relevant information in FTGAIC’s
site for more details.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE I: RankAct List in FightingICE

RankAct Skill content Rank
STAND D DF FC Throws a special fire ball 1
STAND F D DFB A hard uppercut 2
STAND D DB BB A slide kick 3
STAND D DF FB Throws a heavy fire ball 4

III. PROPOSED METHOD

In this section, we describe our proposed method for gener-
ating gameplay to entertain spectators. Our research hypothesis
is that a fight between two AI players would be exciting if each
AI player selects their actions based on highlight cues. This
would result in a fight consisting of many highlights which
are generated subject to the amount of energy of both players,
causing also up and down tension during the fight.

In this work, MCTS is used, and three highlight cues are
introduced to form the evaluation function of MCTS: “Action,”
“Score Transition,” and “Distance.” All of the three cues
are expected to increase aggression in gameplay, which is
what spectators demand in both traditional sports [26] and
esports [27]. It is Action that we upgrade in this paper from our
previous work [6]. Out of 56 actions available in FightingICE,
40 actions consisting of all the movement, guard, and skill
actions are used. A supplementary page2 is available that
contains the list of the actions in use, the link to the source
code, and other auxiliary information.

A. Action

In our previous work [6], this cue prioritized certain actions
by the AI player and was defined based on our experience in
organizing FTGAIC as follows:

Evaction =

 1
2Rank−1 (belongs to RankAct)

0 (otherwise)
(3)

where RankAct is a list of actions, and Rank is the value
associated to each action in the list. The list of actions and
their rank are shown in Table I. In our previous work, hinted
by the Basket Type cue [14], the actions in the list are those
we considered to have high visual effects. The value of an
action that is not in the list is 0.

However, as mentioned earlier, the resulting gameplay was
prone to containing only few actions from the list, in particular
those with low ranks. We later found out that the AI does not
have sufficient energy to execute high-rank actions, especially
the rank-1 action in the list, as the energy is consumed by
earlier executed lower-rank actions. As a result, we propose a
new mechanism for implementing this cue in the following.
The basic idea behind the new mechanism is that of promoting
execution of actions with high damage values but low energy
consumption.

2http://www.ice.ci.ritsumei.ac.jp/%7eruck/hlmcts-tog.htm

Evaction =

Da

Ea
(if Ep ≥ τ1 & Ea 6= 0 & Da > τ2)

1 (if Ep < τ1 & Ea = 0)

0 (otherwise)
(4)

where Da and Ea are the damage value and the energy
consumption of action a, respectively; Ep is the energy the
player has at the end of the current simulation; and τ1 and
τ2 are thresholds regarding energy consumption and damage,
respectively.

B. Score Transition

This cue delays actions with high damage values and is
defined as follows:

Evscore = RoundT ime×Damage (5)

where RoundT ime and Damage represent the elapsed fight
time and the damage value, respectively, both at the end of
the current simulation. According to this term, the AI player
prioritizes actions with high damage values, and this kind of
an earnest fight is more prominent as the time is closer to the
end of the round. The term is based on Score Differential [14],
but has been adapted to the fighting game accordingly.

C. Distance

This cue prioritizes a close-distance fight near the center of
the screen and is defined as follows:

Evdistance = 1−
∣∣∣∣center −Xposcenter

∣∣∣∣ (6)

where center is the x coordinate at the center of the screen,
and Xpos is the AI player’s x coordinate. This term will have
a higher value when the AI player is positioned closer to the
center of the screen. Note that if the distance between both
AI players is only used, they might end up fighting at either
edge of the screen, which we consider less exciting.

D. Evaluation Function

Finally, the evaluation function of MCTS in Eq. (2) is
concretely defined as follows:

Evalj =
Evaction + Evscore + Evdistance

3
(7)

where during backpropagation the value of Evaction of the
first action in the current path is used for the cue at that node;
and min-max normalization is applied beforehand to Evscore
to make it range between 0 and 1; Note that the value of
Evdistance is already in this range by its definition and that the
same range can be achieved for Evaction by properly setting
the value of τ2.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE II: Parameters used in the experiments

Notation Description Value
C Balancing parameter 1

Nmax Threshold of the number of visits 10
Dmax Threshold of the tree depth 10
Lsim Simulation-time budget 60 frames
Tmax Execution time of MCTS 16.5 ms
center Center of the game screen 480 pixels
τ1 The energy-consumption threshold in eqn. (4) 150
τ2 The damage-value threshold in eqn. (4) 30

IV. EXPERIMENTS

In this section, we describe experiments conducted to verify
the performance of the proposed method. We compare game-
play generated by different pairs of AI players as follows:

• gameplay between two of the proposed AI (newHL)
• gameplay between two of our previous AI (oldHL)
• gameplay between the winning AI (ReiwaThunder) and

the runner-up (RHEA PI) of the 2019 FTGAIC.
Results from the conducted gameplay analysis and user study
are given.

The last type of gameplay is introduced to examine if high-
performance AIs in the competition could be directly used to
generate entertaining gameplay, which was not done in our
previous work [6]. As a result, their gameplay, empirically
found to have the most aggression among gameplay between
top entry AIs, is used as a benchmark. ReiwaThunder makes
its decision based on Minimax and some predefined rules
while RHEA PI is based on the Rolling Horizon Evolutionary
Algorithm with an on-line-learning opponent model. Note that
we did not use gameplay of ReiwaThunder vs ReiwaThunder
because both AI players were seen to perform the same actions
in many situations and thus unnatural.

A. Environment

1) FightingICE: In our experiments, the value of HPmax

was set to 400 according to the rule of the Standard Track
of FTGAIC. We used the latest version of FightingICE and
its only official character ZEN for the 2020 FTGAIC in this
work, while using the 2019 version in our previous work [6].

2) Parameter Settings: In the experiments, the values of
the parameters are summarized in Table II. The first six
parameters were shared by both newHL and oldHL and set
to the same values as those in our previous work [6]. For the
last two parameters, τ1 was set to the energy consumption of
STAND D DF FC (the rank-1 action in Table I), which has
the highest amount of energy consumption and is the most
destructive among the actions in FightingICE, and τ2 was set
to a value higher than the damage value of STAND D DF FB
(the rank-4 action in Table I) to suppress the use of it and other
similar small-damage actions.

B. Gameplay Analysis

Here, we performed an analysis for each of the three
types of gameplay, i.e., newHL vs newHL, oldHL vs oldHL,
and ReiwaThunder vs RHEA PI, which are henceforth called
newGP, oldGP, and strongGP, respectively. In particular, we

generated 1000 rounds of gameplay for each type and analyzed
them using three criteria: “Mean Action Usage” (MAU),
“Mean Health Variance” (MHV), and “Average Character
Distance” (ACD) defined as follows:

• MAU: the mean of the number of times that each action
is executed per one AI player, the left player indicated in
each gameplay type, throughout its fight for all ground
actions (executed when the AI player is on the ground)
and all air actions (when it is in the air).

• MHV: the mean of the variance of the HP difference
between the two AI players among each 100 consecutive
frames

• ACD: the mean of the average distance between the two
characters throughout their fight

Results and Discussions: Figure 1 shows the MAU results
for the ground actions and the air actions. In the left sub-
figure, it can be seen that ReiwaThunder in strongGP tends to
frequently conduct STAND B (a light kick) and STAND FB
(a higher hard kick). This is because of heuristics employed in
ReiwaThunder that promote execution of these two actions and
only make ReiwaThunder execute STAND D DF FC only
when it has a sufficient amount of energy to execute the action.

oldGP is prone to have a frequent use of STAND D DF FB
(shooting a strong projectile) because it is the action that
requires the least amount of energy consumption in RankAct
and is often selected by MCTS when there is no sufficient
energy to conduct the other higher-rank actions in the list.
Because this skill action allows both AI players to execute it
while being apart, such frequent execution of the skill action
also affects both MHV and ACD of oldGP, as shown later in
this sub-section.

On the other hand, newGP has a more variety in execut-
ing the actions, including those in RankAct, in particular,
STAND D DF FC, which is not seen in oldGP. The superi-
ority of newGP over the other gameplay types with respect
to the variety in executed actions can also been seen in the
Shannon entropy (base-2) value with respect to the execution
frequency of each action (the ratio of its MAU over the sum of
MAUs for all ground actions): 3.87, 3.21, and 2.79 for newGP,
oldGP, and strongGP, respectively.

The right-subfigure of Fig. 1 shows the air-action histograms
for the three gameplay types. Although air actions are less
frequently executed for all the gameplay types, AIR A (a light
overhead punch in the air) and AIR B (a light overhead kick
in the air) are seen more in both newGP and oldGP than
in strongGP. This is because those air actions contribute to
the highlight cues. The entropy values of the air actions in
newGP, oldGP, and strongGP are 1.69, 1.27, 1.47, respectively,
which again shows that newGP outperforms the other types of
gameplay with respect to the action variety.

The MHV values are shown in Fig. 2. It can be seen that
the values in both newGP and strongGP rise after a certain
fight period and then, from around the 800th frame, oscillate
toward the round end (the 3600th frame). In addition, both
gameplay types have much higher values than that of oldGP. In
other words, beginning from around one-fourth of the round,
the HP difference between the two AI players fluctuates more
strongly in newGP and strongGP than oldGP. The difference

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 1: Mean action usage of ground (left) and air (right) actions, where the error bars represent standard deviations

Fig. 2: Mean health variance

TABLE III: Average Distance

Gameplay Average Distance
newGP 170.46 (15.45)
oldGP 419.37 (57.46)

strongGP 168.81 (13.22)

between newGP and oldGP stems from the difference in
implementation of Action, by which the former has a more
variety in executed actions as discussed earlier in this sub-
section.

ACD is shown in Table III, including standard deviation in
parentheses. It can be clearly seen that close-distance fights are
more pronounced in both newGP and strongGP than oldGP.
Since in both newGP and oldGP the same mechanism is
used to implement Distance, their difference also stems from
the way that Action is implemented. In newGP, the average
position (and its standard deviation) of AI Player 1, who starts
from the left, and AI Player 2, who starts from the right, are
477.61 (114.22), and 482.11 (111.08), respectively. Although
not shown in this paper, their histograms of the x-coordinate
(cf. the supplementary page whose link has been introduced
in sec. III) show that both AI players do not always position
themselves near the center.

C. User Study

In this user study, we compared the fun of newGP and
strongGP, selected here because of being the most promising
two gameplay types from the analysis results in the previous
subsection. There were 40 participants (35 male and 5 female
college students, with an average age of 24.1 and a standard
deviation of 1.8). The participants were asked to watch each of
three pairs (cf. the aforementioned supplementary page) of two
gameplay video clips (one round per clip) from newGP and

TABLE IV: Votes per round

Gameplay Round1 Round2 Round3
newGP 28 31 25

strongGP 12 9 15

TABLE V: Reasons for selection

GP Reason
newGP · Because there were many fights in close proximity

and I could not read the development of the game
· Because of flashy movement
· Variation in attacks, better defense of both players
· Match dominance has changed many times along the way

strongGP · Beat the opponent in less time
· The way of defense seems more reasonable
· I thought that thorough fighting was good

strongGP. Then, given no information on how each gameplay
was generated, they were asked to individually answer “Please
select the most fun video” and to comment their reasons for
selection. The user study was conducted on an online survey
site which each time displayed a pair of gameplay video
clips of the same but randomly selected round number to a
participant.

Results and Discussions: Table IV shows the number of
votes between newGP and strongGP for each of the three
rounds displayed to the participants. As can be seen from this
figure, newGP outperforms strongGP for all the three rounds.
Representative comments by the participants are shown in
Table V. In addition, according to the exact binomial test,
although not statistically significant for round 3 (p = 0.15), the
difference in the number of votes between the two gameplay
types is statistically significant at the 5% level of significance
for round 1 (p = 0.017) and at the 1% level of significance
for round 2 (p = 0.00068). As a result, it can be said that the
newGP is more fun than strongGP.

V. CONCLUSIONS AND FUTURE WORK

We aim at generating entertaining gameplay for a fighting
game. Our approach is based on existing cue-based highlight
generation methods. In this paper, we improved our previous
method, a Monte-Carlo tree search (MCTS) AI utilizing three
cues forming the evaluation function of MCTS. In particular,
the cue dealing with execution of actions was modified by
prioritizing those actions with high damage values and low
energy consumption.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Our results from the conducted analysis showed the effec-
tiveness of the proposed method over our previous method. In
addition, the conducted user study confirmed that generated
gameplay by two AI players using the proposed method was
more fun to watch than gameplay generated by the winning
AI and the runner-up AI of the 2019 Fighting Game AI
Competition. All participants in the user study were students
from a graduate-level game-AI class and the authors’ labora-
tory, leading to limitation in the population size and diversity
(gender, game-playing experience, and knowledge of game
AI). This is the main limitation of this work and will be
addressed in the future together with other plans described
below.

At present, the weights of the cue terms are equal. As future
work, it might be interesting to tune them, using for example
active learning [28], for certain types of spectators. We are also
interested in analyses of the frequency of alternation of the
leading player and the frequency of combo usage, both during
gameplay, and in generation of believable gameplay [24], [29].
It is also interesting to examine how the proposed highlight-
cue terms work or can be modified to work with another
type of evaluation function that implements a pre-defined
persona [5], a pre-defined play-arc [25], or gameplay pacing.
There are other alternatives to cope with the real-time property
of fighting games such as treating the game as a turn-based
game like Go or as a simultaneous move game [30] as well as
the mechanism employed in [25]. We plan to investigate them
in future. Extension of this work to other games where MCTS-
based AIs dominate is also worth exploration by introducing
highlight-cue terms to their evaluation function.

REFERENCES

[1] T. Smith, M. Obrist and P. Wright, “Live-Streaming Changes the (Video)
Game,” in Proc. 11th European Conference on Interactive TV and Video,
ACM, pp. 131–138, 2013.

[2] R. Thawonmas and T. Harada, “AI for Game Spectators: Rise of PPG,”
in Proc. AAAI 2017 Workshop on What’s next for AI in games, San
Francisco, USA, pp. 1032–1033, 2017.

[3] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in Proc. International Conference on Computers and
Games, pp. 72–83, 2006.

[4] C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling, P.
Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

[5] R. Ishii, S. Ito, M. Ishihara, T. Harada and R. Thawonmas, “Monte-Carlo
Tree Search Implementation of Fighting Game AIs with Personas,” in
Proc. 2018 IEEE Conference on Computational Intelligence and Games,
Maastricht, The Netherlands, pp. 54–61, 2018.

[6] R. Ishii, S. Ito, M. Ishihara, T. Harada and R. Thawonmas, “A Fighting
Game AI Using Highlight Cues for Generation of Entertaining Game-
play,” in Proc. 2019 IEEE Conference on Games, London, UK, 6 pages,
2019.

[7] Y. Takano, W. Ouyangy, S. Ito, T. Harada and R. Thawonmas, “Applying
Hybrid Reward Architecture to a Fighting Game AI,” in Proc. 2018 IEEE
Conference on Computational Intelligence and Games, Maastricht, The
Netherlands, pp. 433–436, 2018.

[8] S. Y. and K.-J. Kim, “Deep Q Networks for Visual Fighting Game
AI,” in Proc. 2017 IEEE Conference on Computational Intelligence and
Games, New York City, USA, 3 pages, 2017.

[9] D.T.T. Nguyen, V. Quang and K. Ikeda, “Optimized Non-visual In-
formation for Deep Neural Network in Fighting Game,” in Proc. 9th
International Conference on Agents and Artificial Intelligence, Porto,
Portugal, pp. 676–680, Feb. 2017.

[10] S. Yoshida, M. Ishihara, T. Miyazaki, Y. Nakagawa, T. Harada and R.
Thawonmas, “Application of Monte-Carlo Tree Search in a Fighting
Game AI,” in Proc. IEEE 5th Global Conference on Consumer Elec-
tronics, pp. 623–624, 2016.

[11] D.P. Liebana, J. Dieskau, M. Hunermund, S. Mostaghim, S. Lucas,
“Open Loop Search for General Video Game Playing,” in Proc. the
2015 Annual Conference on Genetic and Evolutionary Computation,
pp. 337–344, 2015.

[12] P. Auer, N. Cesa-Bianchi, P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2–3, pp.
235-256, 2002.

[13] B. Nunnapus, C. Nagul, J. Chuleerat, “Flashlight and player detection
in fighting sport for video summarization,” in Proc. 2005 IEEE Interna-
tional Symposium on Communications and Information Technology, pp.
441–444.

[14] B. Vinay, P. Caroline, E. Irfan, “Leveraging contextual cues for gen-
erating basketball highlights”, in Proc. 2016 ACM on Multimedia
Conference, pp. 908–917.

[15] C. Ringer and M. A. Nicolaou, “Deep unsupervised multi-view detection
of video game stream highlights,” in Proc. the 13th International
Conference on the Foundations of Digital Games, article no. 15, 6 pages,
2018.

[16] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee and R. Tha-
wonmas, “Fighting Game Artificial Intelligence Competition Platform,”
in Proc. IEEE 2nd Global Conference on Consumer Electronics, pp.
320–323, 2013.

[17] X. Neufeld, S. Mostaghim, and D. Perez-Liebana, “HTN fighter: Plan-
ning in a highly-dynamic game,” in Proc. 2017 Computer Science and
Electronic Engineering, Colchester, pp. 189–194, Sep. 2017.

[18] S. Demediuk, M. Tamassia, Wi. Raffe, F. Zambetta, X. Li and F.F.
Mueller, “Monte Carlo Tree Search Based Algorithms for Dynamic Dif-
ficulty Adjustment,” in Proc. 2017 IEEE Conference on Computational
Intelligence and Games, pp. 53–59, 2017.

[19] M.-J. Kim and K.-J. Kim, “Opponent Modeling based on Action Table
for MCTS-based Fighting Game AI,” in Proc. 2017 IEEE Conference
on Computational Intelligence and Games, pp. 178–180, 2017.

[20] K. Majchrzak, J. Quadflieg, and G. Rudolph, “Advanced Dynamic
Scripting for Fighting Game AI,” in Proc. Entertainment Computing,
pp. 86–99, 2015.

[21] K. Asayama, K. Moriyama, K. Fukui, and M. Numao, “Prediction as
Faster Perception in a Real-time Fighting Video Game,” in Proc. 2015
IEEE Conference on Computational Intelligence and Games , pp. 517–
522, 2015.

[22] N. Sato, S. Temsiririkkul, S. Sone. and K. Ikeda, “Adaptive Fighting
Game Computer Player by Switching Multiple Rule-based Controllers,”
in Proc. 3rd International Conference on Applied Computing and
Information Technology, pp. 52–59, 2015.

[23] H. Park and K.J. Kim, “Learning to Play Fighting Game using Massive
Play Data,” in Proc. 2014 IEEE Conference on Computational Intelli-
gence and Games, pp. 458–459, 2014.

[24] M. Ishihara, S. Ito, R. Ishii, T. Harada and R. Thawonmas, “Monte-
Carlo Tree Search for Implementation of Dynamic Difficulty Adjustment
Fighting Game AIs Having Believable Behaviors,” in Proc. 2018 IEEE
Conference on Computational Intelligence and Games, pp. 46–53, 2018.

[25] S. Ito, M. Ishihara, M. Tamassia, T. Harada, R. Thawonmas, and F.
Zambetta, “Procedural Play Generation According to Play Arcs Using
Monte-Carlo Tree Search,” in Proc. of the 18th International Conference
on Intelligent Games and Simulation, pp. 67–71, 2017.

[26] R.T. Jewell, A. Moti, and D. Coates, “A Brief History of Violence and
Aggression in Spectator Sports,” in Sports Economics, Management and
Policy, volume 4, pp. 11–26, 2012.

[27] J. Hamari and M. Sjöblom, “What is eSports and why do people watch
it?,” in Internet Research, vol. 27, issue: 2, pp. 211–232, 2017.

[28] A. Zook, E. Fruchter, M. O. Riedl, “Automatic playtesting for game
parameter tuning via active learning,” in Proc. the 9th International
Conference on the Foundations of Digital Games 2014, 8 pages, 2014.

[29] S. Devlin, A. Anspoka, N. Sephton, P.I. Cowling, “Combining Gameplay
Data with Monte Carlo Tree Search to Emulate Human Play,” in Proc.
Twelfth Artificial Intelligence and Interactive Digital Entertainment
Conference, pp. 16–22, 2016.

[30] M.J.W. Tak, M. Lanctot, and M.H.M. Winands, “Monte Carlo Tree
Search Variants for Simultaneous Move Games,” in Proc. 2014 IEEE
Conference on Computational Intelligence and Games, Dortmund, Ger-
many, 8 pages, 2014.

