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Abstract— Real-time strategy (RTS) is a sub-genre of strategy 
video game which typically involves resource gathering, base 
building, strategy planning, and combat scenarios. With 
complicated gameplay, vast state and action spaces, RTS games 
have been proven to be an excellent platform for artificial 
intelligence research. One of the most challenging problems 
posed by RTS games is the detailed control of units in combat, i.e., 
unit micromanagement. In this paper, we present a method of 
integrating fuzzy integral and fast heuristic search for improving 
the quality of unit micromanagement in the popular RTS game 
StarCraft. Experiments are reported at the end of this paper, 
showing promising results and the potential of the proposed 
method in this domain. 
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I. INTRODUCTION 

Developing AI systems for RTS games has gained 
increasing attention in the AI research community in recent 
years [1]. In a typical RTS game, such as StarCraft, each player 
starts with a main base and a number of workers. The workers 
can be used to gather one or more types of resources, and to 
construct buildings and expansions. The player must spend 
resources to train his army with the ultimate goal of destroying 
all units and buildings of the enemy. With fast-paced gameplay 
and the possibility of simultaneous moves, RTS games have 
reached a level of complexity unseen in other traditional games 
like Chess or Go. 

In StarCraft, unit micromanagement not only is the key to 
winning a battle but also decides the result of the whole game. 
With high quality micromanagement, one side can completely 
destroy the other side which commands even more or stronger 
units. Although there have been several AI studies on this 
domain, bots whose unit behaviors are predefined via static 
scripts still predominate in AI competitions. However, due to 
their static nature, they are highly exploitable and can be 
countered quite easily by using appropriate countermeasures. 
Therefore, a recent trend in unit micromanagement is using 
search-based techniques to dynamically control units while still 
considering the collaboration among them. Some state-of-the-
art methods such as Alpha-Beta [2], UCT [3], and Monte Carlo 
planning [4] have been applied and achieved dominance over 
script-based techniques. 

It is known that the performance of a search-based 
technique relies a lot on its heuristic evaluation function as it is 
required in almost all search algorithms. However, in StarCraft, 
heuristic functions tend to be very generic (like LTD and LTD2 
used in [2]) and cannot fully capture the game state, especially 
when multiple types of units can interact and boost each other. 
In this paper, we present a fuzzy-based evaluation that can 
accurately evaluate the game state even when there are several 
unit types involved. This method when combined with existing 
heuristic search can result in a better performance than the 
original algorithms. 

II. BACKGROUND

A. Non-additive Properties in RTS Games 

There may be dozens of unit types that can interact in 
different ways in any RTS game. This leads to enormous 
numbers of possible unit combinations. A combination of two 
unit types may result in greater or less effectiveness than the 
sum of their individual impacts. Suppose ߤሺܺሻ is the measure 
of effectiveness provided by unit combination ܺ . In RTS 
games, it is common that ߤሺܺሻ is non-additive, i.e.,  ߤሺ ଵܺ ൅
ܺଶሻ ൑ ሺܺଵሻߤ ൅ ሺܺଶሻߤ  or ߤሺܺଵ ൅ ܺଶሻ ൒ ሺߤ ଵܺሻ ൅ ሺܺଶሻߤ . For 
example, a combination of Siege Tank and Vulture is a 
standard tactic in the popular RTS game StarCraft. Siege Tank 
(normally used in siege mode) is a powerful unit with massive 
damage and very long attack range. However, it has a 
minimum attack range of 2, making it quite weak against melee 
units. On the other hand, Vulture is an extremely mobile unit 
which moves quickly enough to be able to “hit and run” against 
most melee units without risk. Thus, Siege Tank and Vulture 
are widely used to protect each other. In this case, we can 
suppose ߤሺሼܶܽ݊݇, ሽሻ݁ݎݑݐ݈ݑܸ ൐ ሺሼܶܽ݊݇ሽሻߤ ൅  .ሽሻ݁ݎݑݐ݈ݑሺሼܸߤ

B. Fuzzy Measure and Fuzzy Integral 

In this sector, we review the concept of fuzzy measure and 
Choquet integral. 

Definition 1: A fuzzy measure on a measurable space 
ሺܺ, ܨ	:ߤ ሻ is a real-valued set functionܨ → Թ  satisfying: 

1) ሺ∅ሻߤ ൌ 0,
2) ሻܣሺߤ ൑ ܣ ሻ wheneverܤሺߤ ∈ ,ܨ ܤ ∈ ,ܨ ܣ ⊆ .ܤ

Definition 2: A non-monotonic fuzzy measure on ሺܺ, ሻ is aܨ
real-valued set function :ߤ	ܨ → Թ satisfying ߤሺ∅ሻ ൌ 0. 
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Non-monotonic fuzzy measure matches well with non-
additive properties in RTS games and can be trained by 
machine learning methods. 

After defining a set of fuzzy measures, we can use fuzzy 
integral to calculate the expected utility of an uncertain event. 
As a classical fuzzy integral, Choquet integral has been 
successfully applied in many areas such as statistical mechanics 
and potential theory. Its definition is as follows. 

Definition 3: Let ߤ be a fuzzy measure on ܺ. The discrete 
Choquet integral of a function ݂: ܺ → Թା with respect to ߤ is 
defined by 

න݂ሺݔሻ ∘ ሺܺሻߤ ൌ෍ቀ൫݂ሺݔ௜ሻ െ ݂ሺݔ௜ିଵሻ൯

௡

௜ୀଵ

ൈ ሻݔሺ݂|ݔሺሼߤ ൒ ݂ሺݔ௜ሻሽሻቁ 

(1)

where 0 ൌ ݂ሺݔ଴ሻ ൑ ݂ሺݔଵሻ ൑ ݂ሺݔଶሻ ൑ ⋯ ൑ ݂ሺݔ௡ሻ. 

III. RELATED WORK 

So far, there has been only a limited number of AI research 
incorporating fuzzy measure and fuzzy integral into RTS game 
agents by Y.J. Li et al. [5]. They applied different fuzzy 
integrals to solve the unit selection problem. The key to 
winning in most RTS games is to build up a strong army with 
appropriate unit types which can gain massive destroy power 
against enemy army. Different unit combinations give different 
effectiveness, therefore, to estimate the power of each unit 
combination becomes one of the most essential tasks in the 
game. Due to feature interactions existing among different unit 
types, the effectiveness of a unit combination cannot be simply 
calculated by using weighted average. They therefore tried to 
apply fuzzy integrals for that calculation and proposed three 
new fuzzy integrals and compared with the classical Choquet 
integral. The details of those fuzzy integrals are given as below. 
Note that ܺ  is a unit combination, ݔ  is a unit type, ݂ሺݔሻ  is 
defined as the proportion of ݔ and the fuzzy integral returns the 
effectiveness of that combination. 

A. Max-based Fuzzy Integral 

න݂ሺݔሻ ∘ ሺܺሻߤ ൌ෍ቀ݂ሺݔ௜ሻ ൈ ሺߤ൫ݔܽ݉ ௜ܵሻ൯ቁ

௡

௜ୀଵ

 (2)

where ݔ௜ ∈ ௜ܵ, ݊ is the number of unit types. 

Max-based fuzzy integral is developed with the policy of 
winner takes all. It considers only the most powerful unit 
combination which involves the current unit type. 

B. Mean-based Fuzzy Integral 

න݂ሺݔሻ ∘ ሺܺሻߤ ൌ෍ቌ݂ሺݔ௜ሻ ൈ
1
݉௜

෍ߤ൫ ௜ܵ௝൯

௠೔

௝ୀଵ

ቍ

௡

௜ୀଵ

 (3)

where ݔ௜ ∈ ௜ܵ௝, ݊ is the number of unit types, ݉௜ is the number 
of sets which include ݔ௜. 

Mean-based fuzzy integral is calculated considering all the 
interactions that are related to each unit type. All the fuzzy 

measures which involve the current unit type will be selected 
and the average value is computed. 

C. Order-based Fuzzy Integral 

න݂ሺݔሻ ∘ ሺܺሻߤ ൌ෍൫݂ሺݔ௜ሻ ൈ ሻݔሺ݂|ݔሺሼߤ ൑ ݂ሺݔ௜ሻሽሻ൯

௡

௜ୀଵ

(4)

where ݊  is the number of unit types, ݂ሺݔଵሻ ൒ ݂ሺݔଶሻ ൒ ⋯ ൒
݂ሺݔ௡ሻ ൐ 0. 

Order-based fuzzy integral takes into account the unit 
production sequence in RTS games. Data analysis shows that 
advanced units often dominate the proportion in the army and 
thus should be considered as having more cooperation with 
other units. Each unit type will calculate the interaction with 
the one having less production than it, and the largest ݂ሺݔሻ is 
combined with the fuzzy measure of all unit types. 

All these fuzzy integrals have been proven to give better 
results than the classical Choquet integral when applied to RTS 
games. However, because their research focuses on strategy 
planning (i.e., the main purpose is to find the most powerful 
unit combination to produce), the function ݂ሺݔሻ  is defined 
without considering the unit number of each types and the 
properties of individual units (damage, cooldown, current hit 
points). As an example, suppose that there are three different 
unit combinations as follows: 1) 5 Protoss Zealots and 5 
Protoss Dragoons, each unit having 50 hit points; 2) 5 Protoss 
Zealots and 5 Protoss Dragoons, each unit having 100 hit 
points; 3) 10 Protoss Zealots and 10 Protoss Dragoons, each 
unit having 100 hit points. It can easily be seen that the fuzzy 
integrals mentioned above return the same value for all three 
combinations. Thus, this prompted us to come up with another 
definition of ݂ሺݔሻ when we apply those fuzzy integrals to our 
problem—unit micromanagement. 

IV. METHODOLOGY 

Our main idea is to improve the quality of evaluation 
functions used in existing search algorithms by applying fuzzy 
measure and fuzzy integral to estimate the value of a game 
state. In our problem, we define that value as the difference 
between the power of the player’s army and the enemy’s army, 
where the power of one’s army is estimated by calculating the 
following fuzzy integral: 

ݕ݉ݎܣ ݎ݁ݓ݋݌ ൌ න݂ሺݔሻ ∘ ሺܺሻ (5)ߤ

Here ߤሺܺሻ  is the fuzzy measure of the corresponding unit 
combination and can be considered as its contribution rate for 
the total power. ݂ሺݔሻ is a  unit statistic function defined by 

݂ሺݔሻ ൌ
1
ܰ
෍

	௜ሻݑሺ݌݄
௜ሻݑሺ݌݄_ݔܽ݉

௡

௜ୀଵ

 (6)

where ݄݌ denotes hit points, ݔ is a unit type, ݑ௜ is a unit whose 
type is ݔ , ݊  is the unit number of type ݔ , and ܰ  is the 
maximum number of units that a player can have in the game. 
Note that when all units have the maximum number of hit 
points, the value of ݂ሺݔሻ is equal to the proportion of unit type. 



A. Data Collection and Analysis 

We selected StarCraft: Brood War (SC: BW) as our 
research platform. It is a military science fiction, real-time 
strategy game released by Blizzard Entertainment in 1998. As 
of May 2007, SC: BW has sold almost ten million copies and 
became one of the most popular video games of all time. For 
AI researchers, SC: BW is also an ideal test bed for AI 
algorithms thanks to the BWAPI (Brood War API [6])’s 
comprehensive interface into the game engine. 

300 replays of professional one-versus-one SC: BW games 
are collected from the Internet. Due to time constraints, we 
decided to focus only on Protoss vs. Protoss match-up and 
games that involve 8 most used unit types. After analyzing the 
replays, we obtained the data of 940 battles. Before and after 
each battle, the unit statistics and the score of both players were 
recorded. Those scores were given by the game system for 
destroying enemy units and used to learn the fuzzy measure in 
our research. 

B. Learning Fuzzy Measure by Genetic Algorithm 

There is a relation between the score a player obtains in 
each battle, the power of his army and the result of the battle. 
Data analysis shows that the higher the score, the more 
powerful the army and the higher chance of winning. Thus, we 
can consider the estimated power of the army as the expected 
value of the score. This leads to the problem of finding the 
fuzzy measure that “best” fits the collected data. In this paper, 
we use a genetic algorithm approach to solve this problem. 

Each chromosome is made up of 2௡ െ 1 fuzzy measures 
corresponding to all possible unit combinations, i.e. ߤሺሼݔଵሽሻ, 
ଶሽሻݔሺሼߤ ,ଵݔሺሼߤ ,..., ଶሽሻݔ ,..., ,ଵݔሺሼߤ	 ,ଶݔ … , ௡ሽሻݔ  where ݔଵ , 
݊ ,௡ represent ݊ kinds of unit types. In our problemݔ	,...,ଶݔ ൌ 8 
and real-valued encoding is used, which results in the length of 
a chromosome being 255. The fitness calculation of a 
chromosome is described as follows: 

1. Extract the fuzzy measure from that chromosome. 
2. Extract real scores and values of the unit statistic 

function from the replays, normalize those real scores 
between 0 and 1. 

3. Calculate the estimated scores by using fuzzy integral 
as (5). 

4. Calculate the root mean square error. 

ܧܵܯܴ ൌ ඩ
1
ܰ
෍ሺ݁ݎ݋ܿݏ௘௦௧ െ ௥௘௔௟ሻଶ݁ݎ݋ܿݏ
ே

௜ୀଵ

 (7)

5. Calculate the fitness. 

ݏݏ݁݊ݐ݅ܨ ൌ
1

1 ൅ ܧܵܯܴ
 (8)

In our GA, a mixture of roulette wheel selection and elitist 
selection was used to construct a new population. Population 
size, the number of generations, crossover rate, and mutation 
rate were set to 1000, 500, 0.75, 0.05 respectively. The result of 
the learning process is illustrated in Fig. 1. Shown are the best 

fitnesses obtained by using different fuzzy integrals: max-based 
fuzzy integral, mean-based fuzzy integral, and order-based 
fuzzy integral. As can be seen, order-based fuzzy integral 
showed the best performance among three methods, which is 
the same result as obtained by Y.J. Li et al. in [5]. Thus, only 
order-based fuzzy integral and the corresponding fuzzy 
measure will be used in our evaluation below. 

V. EVALUATION 

Experiments were carried out on the simulator SparCraft 
[7] to compare the performance of the proposed method and 
other evaluation methods often used in this field. SparCraft is 
an open source StarCraft combat simulation package with a 
high level of accuracy. Researchers can easily implement new 
algorithms and integrate them into this simulator and use it as 
a test bed for AI research. Two state-of-the-art search 
algorithms (Alpha-Beta and UCT) and a novel greedy search 
algorithm called Portfolio Greedy Search are already 
implemented and will be used in our experiments. Portfolio 
Greedy Search does not perform any recursive tree search, but 
instead relies on heuristic evaluations using deterministic 
playouts at the root node. D. Churchill and M. Buro showed 
that it can outperform both Alpha-Beta and UCT for large 
StarCraft combat scenarios. For further details we refer the 
reader to [3]. 

A. Experiments 

Those search algorithms implemented in SparCraft 
evaluate a game state by performing deterministic script-based 
game playouts. By assuming both players use the same 
scripted policy and performing a playout, it is able to estimate 
which player has an advantage at a given state. After a playout 
reaches its terminal condition, the following evaluation 
formula is called.  

ሻݏ2ሺܦܶܮ ൌ ෍ ඥ݄݌ሺݑሻ
௨∈௎భ

ൈ ሻݑሺ݂݌݀

െ ෍ ඥ݄݌ሺݑሻ
௨∈௎మ

ൈ  ሻݑሺ݂݌݀
(9)

 
Fig. 1.  Best fitnesses at each generation obtained by different fuzzy 
integrals. The best value is 0.88. 



Here ݄݌ denotes hit points, ݂݀݌ denotes damage per frame, ଵܷ, 
ܷଶ  are set of units controlled by player 1 and player 2 
respectively. It has been shown in [2] that the combination of 
playouts and LTD2 formula gives much better performance 
than using only LTD2 formula. In our experiments, we 
replaced LTD2 formula by fuzzy-based evaluation to evaluate 
the results of the playouts, and compared the performance of 
the new combination with the original one. 

Each experiment consisted of 4 combat scenarios, in which 
two players control similar armies of 24 Protoss units. In order 
to mimic real battles in the game, the number of unit types was 
set to vary from 1 to 4 and the number of units of each type 
was generated randomly. At the beginning of each battle, two 
forces are placed separately but symmetrically around the X-
axis of the map. 

B. Results 

50 games were played for each combat scenario, giving 
200 total games for each pair of opponents. The performance 
of the proposed method against the existing one is presented in 
Fig. 2. It can be seen that the win rate of fuzzy-based 
evaluation exceeded 50% in all combat scenarios, i.e., it 
helped improve those search algorithms mentioned above. The 
most significant difference is obtained when integrating the 
proposed method into Portfolio Greedy Search. This must be 
because Portfolio Greedy Search does not perform any 
recursive tree search and relies most on the goodness of 
heuristic evaluations. Besides, as shown in Fig. 3, the 
proposed method tends to achieve better results in combat 
scenarios in which more unit types are involved and interact 
with each other. 

VI. CONCLUSION 

In this paper, we presented a new approach for constructing 
an evaluation function, essential in most search algorithms 
when applied to computer games. We learned the fuzzy 
measure from real game data and used it to calculate the order-
based fuzzy integral as estimation for the goodness of a game 
state. We carried out experiments with various settings to 
evaluate the proposed method and the results are encouraging. 
We were successful in improving the existing search methods 
and achieved a better quality of unit micromanagement. 

For future work, we want to incorporate the search 
algorithms using fuzzy-based evaluations into our StarCraft 
bot—ICEbot 1 . We plan to collect more data and perform 
clustering in order to obtain better fuzzy measures that can 
handle more scenarios seen in the game. In addition, it is also 
our intention to combine the proposed method in this paper 
with one of our previous works that utilizes potential flow for 
positioning combat units [8], and aim for a more human-like 
StarCraft agent. 
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Fig. 2.  Average win rates of the proposed evaluation method against the 

existing method when applied in different search algorithms. Fig. 3.  Detailed win rates of the proposed evaluation method against the 
existing method when applied in different search algorithms. 




