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Abstract— This paper describes an application of Evolu-
tionary Strategy to optimizing ten distance parameters and
seven cost parameters in our Ms Pac-Man controller, ICE
Pambush 3, which was the winner of the IEEE CIG 2009
competition. Targeting at the first game level, we report our
results from 14 possible optimization schemes; arising from
combinations of which initial values to chose, those originally
used in ICE Pambush 3 or those randomly assigned, and which
parameter types to optimize first, the distance parameters,
the cost parameters, or both. We have found that the best
optimization scheme is to first optimize the distance parameters,
with their initial values set to random values, and then the cost
parameters with their initial values set to random values. The
optimized ICE Pambush 3 using the resulting parameters from
this optimization scheme has an improvement of 17% in the
performance for the first game level, compared to the original
ICE Pambush 3.

I. INTRODUCTION

Ms Pac-Man serves as a challenging platform for research
in computational intelligence and artificial intelligence. Main
reasons for this include (1) the four different semi-random
moving ghosts, (2) the short response time of 67 milliseconds
to interact with the game, and (3) the inaccessibility of game
circumstance information available in the game engine. A
series of Ms Pac-Man controller competitions [1] have been
held since 2007 for providing an opportunity to compete
among the state-of-the-art controllers and to share recent
research findings.

ICE Pambush 3 [2] is our rule-based controller that won
the IEEE CIG 2009 competition [3]. As also stated at the
competition site, the causes of our victory are due to (1) ef-
fective and efficient game-object extraction from the screen,
(2) an implementation for luring the ghosts to a location
near a power pill and then ambushing them, and (3) some
luck. Luck was in fact a crucial factor in manual selection of
all parameters used in ICE Pambush 3, through repetitions
of heuristic setting of those parameters and then testing
them. Although techniques in computational intelligence or
artificial intelligence were not fully exploited, ICE Pambush
3 can serve as a baseline controller for advanced controllers
exploiting such techniques to compare with.

In this paper, we present an effective application of Evolu-
tionary Strategy (ES) to optimizing ten distance parameters
and seven cost parameters in ICE Pambush 3. The contribu-
tions of this work are as follows:
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Fig. 1. Screenshot of Ms Pac-Man when she is eating an edible ghost

1) Description of the best optimization scheme whose
performance is superior to that of the original ICE
Pambush 3,

2) The values of the resulting distance and cost parame-
ters, and

3) The outline of the controller itself.
The remainder of this paper is organized as follows. First,

we present an overview of Ms Pac-Man and relevant related
work. Next we describe an outline of ICE Pambush 3 and
its parameter optimization schemes. Then we present and
discuss the evaluation results.

II. MS PAC-MAN AND RELATED WORK

Ms Pac-Man (cf. Fig. 1), whose main character is a female
one wearing a red ribbon on its head, was released in 1981
as a variant of Pac-Man. The ghosts in Ms Pac-Man behave
almost non-deterministically, making it difficult to use pre-
set patterns to clear each game level where pills as well as
four power-pills reside, and fruits appear. Major game rules
are as follows:

• In order to finish a given game level and proceed to the
next one, Ms Pac-Man must eat all available pills and
power-pills.

• When Ms Pac-Man is hit by a ghost, its life value,
initially set to 3, is decremented, and this value is added
by one when the score reaches ten thousand,

• If Ms Pac-Man eats a power pill, all available ghosts
outside of the ghost cage will become edible for a
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certain period, during which the more edible ghosts that
Ms Pac-Man eats, the higher score will be earned from
each of them.

• If Ms Pac-Man eats a fruit, a score will be earned
according to the fruit type.

As a pioneer work on Ms Pac-Man controllers, Evolu-
tionary Strategy (cf. [4]) was used to train a neural network
controller [5]. The same group recently compared Temporal
Difference Learning and Evolution approaches for this task
in [6]. Fuzzy techniques were also exploited together with
Evolutionary Strategy and Q-Learning in [7] and [8], respec-
tively. Other recent work includes research focusing on map
circumstances in [9] and [10], a controller based on simple-
tree-search in [11], and an attempt to learn low-complexity
play policies in [12].

A very recent work in [13] used Grammatical Evolution
for evolving both rules and parameters of Ms Pac-Man.
The performance of this approach on level 1 against three
different ghost teams running on a simulator was impressing
even with only one life. The performance on the real game,
however, remains unknown.

III. OUTLINE OF ICE PAMBUSH 3

Our controller moves Ms Pac-Man along the path that
has the lowest cost between its current grid position and
the current target location. ICE Pambush 3 reuses the image
processing mechanism in the previous controller ICE Pam-
bush 2 [14], which won the IEEE CEC 2009 competition, for
extraction of the current game circumstance information from
the game screen. For path finding, in order to suppress the
search time, we adopted two versions of Depth-First Search
(DFS): DFS-A and DFS-B.

DFS-A and DFS-B use different maximum depths m and
different number of factors considered in cost computation.
DFS-A searches with the smaller m but considers more
factors while DFS-B searches with the larger m but considers
less factors. The former is invoked when “a ghost is nearby”
AND “the situation is critical” while the latter is used when
ghosts are far from Ms Pac-Man. At each iteration, the
following nine rules for determining the target location are
examined in this order, and the first rule that holds will be
fired, where D1,D2,. . . ,D10, denote the distance parameters.

Rule 1:
IF
d(nearest power pill) ≤ D2

AND
D3 ≤ d(nearest ghost) ≤ D1

AND
d(ghost nearest to nearest power pill) ≥ D4,

THEN set the “ambush state” to ON and stop mov-
ing at the corner or the cross point near the nearest
power pill waiting for a ghost to come closer, where
d(nearest power pill) is the distance from Ms Pac-
Man to the nearest power pill, d(nearest ghost) the
distance from Ms Pac-Man to the nearest ghost, and

d(ghost nearest to nearest power pill) the distance from
Ms Pac-Man to the ghost nearest to the power pill nearest to
Ms Pac-Man.

Rule 2:
IF
at least one power pill exists
AND
no edible ghost exists
AND
d(nearest ghost) ≤ D1

AND
the “ambush state” is ON
AND
(d(nearest ghost) ≤ D3

OR
d(ghost nearest to nearest power pill) ≤ D4),

THEN move to the nearest power pill with DFS-B.

Rule 3:
IF
at least one power pill exists
AND
no edible ghost exists
AND
d(nearest ghost) ≤ D1

AND
d(nearest power pill) ≤ D5,

THEN set the “ambush state” to OFF and move to the nearest
power pill with DFS-B.

Rule 4:
IF
at least one power pill exists
AND
no edible ghost exists
AND
d(nearest ghost) ≤ D1,

THEN set the “ambush state” to OFF and move to the nearest
power pill with DFS-A.

Rule 5:
IF
at least one edible ghost exists
AND
d(nearest ghost) ≤ D1

AND
d(nearest edible ghost) ≤ D6,

THEN move to the nearest edible ghost with DFS-A, where
d(nearest edible ghost) is the distance from Ms Pac-Man
to the nearest edible ghost.

Rule 6:
IF
at least one pill exists
AND
d(nearest ghost) ≤ D1,
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THEN set the “ambush state” to OFF and move to the nearest
pill with DFS-A.

Rule 7:
IF
at least one edible ghost exists
AND
d(nearest ghost) > D1

AND
d(nearest edible ghost) ≤ D7,

THEN move to the nearest edible ghost with DFS-B.

Rule 8:
IF
at least one pill exists
AND
d(nearest ghost) > D1

AND
(no pill# exists
OR (d(nearest ghost) ≥ D8

AND
d(nearest power pill) ≥ D9

AND
d(pill) ≤ D10)),

THEN move to the nearest pill with DFS-B, where pill#
indicate those pills not lying between any pair of cross points
whose connected path contains a power pill.

Rule 9:
IF
at least one pill exists
AND
d(nearest ghost) > D1,

THEN move to the nearest pill# with DFS-B.
The parameter m in DFS specifies the search space cov-

ering all paths from the current grid of Ms Pac-Man to the
corner or cross points (henceforth, called nodes) at level m.
At a node at level i, where i < m, the current path will
be expanded into four directions; i.e., north, east, south, or
west; where the reverse direction and those towards the wall
are excluded. In particular, m is set to 5 and 10 for DFS-A
and DFS-B, respectively.

To find a path, DFS-A considers the distance cost, the
ghost cost, and the corner cost while DFS-B considers only
the distance cost. The Dijkstra distances between all grids
were computed and stored in the related files in advance.
At the beginning of each game, this distance information is
loaded and used in our search algorithm. Our cost definitions,
with seven cost parameters, are given as follows:

Ghost Cost for each of the four ghosts at node X away
from the ghost:

= Ci/distance(Y to X)2,

where Ci for i = 1 to 4 is the ghost cost parameter for
Blinky, Pinky, Inky, and Sue, respectively, X the jth node

from the ghost, j = 1 and 2, and distance(Y to X) is the
distance from the ghost to node X .

Ghost Cost II at a node where a ghost resides:

= Ci,

where Ci is the same parameter as above.

Ghost Cost III at a node behind a ghost chasing Ms
Pac-Man on the same corridor:

= C5,

where C5 is the ghost cost III parameter.

Distance Cost at node X:

= C6[distance(X)

+distance(X to target)− distance(target)],

where C6 is the distance cost parameter, X is the ith-level
node from Ms Pac-Man, i = 1 to 5 (DFS-A) or 1 to 10
(DFS-B), distance(X) is the distance from Ms Pac-Man to
X , distance(X to target) is the distance from X to the
target location, and distance(target) is the distance from
Ms Pac-Man to the target location.

Corner Cost at each corner:

= C7,

where C7 is the corner cost parameter.

IV. PARAMETER OPTIMIZATION SCHEMES

For parameter optimization, we must find an answer to
each of the following questions .

1) Which should we use between the real game and a
simulator?

2) Should a same set of parameters be used for all game
levels or a different set for each level?

3) How do we evaluate a given set of parameters (or
parameter candidates)?

4) Which algorithm should be employed for this task?
5) Should we exploit the original parameters used in ICE

Pambush 3 and optimize simultaneously the distance
parameters and the cost parameters?

We adopt a web-version [15], which is one of the two
versions recommended at the contest site, of Ms Pac-Man
in this study. A number of research groups used a simulator
in their work [10-13]. Although, the information of all nec-
essary objects are readily accessible and the game time can
be manipulated to decrease the wall clock time in parameter
optimization, most simulators do not have exactly the same
behavior as the two game versions used in the competition.
Our primary reason for using the aforementioned web-
version is that the performance of the controller with this
version implies the performance at the competition.

We plan to use a different set of parameters for each game
level. A same set of parameter was used in ICE Pambush 3.
However, a capable player would readily notice that they
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need to slightly change their tactics for each game level due
to changes in ghost speeds, mazes, etc. In order to be able
to use a different set of parameters for each game level, we
needed and thus implemented an image processing module
for detecting the beginning of each game level. In this work,
we limit ourselves to parameter optimization for the first
game level; according to our experience, the wall clock time
to complete the first game level takes about 1 minute and 30
seconds.

We evaluate a given set of parameters for 10 games
(thus taking approximately 15 minutes) and 100 games
(approximately 150 minutes) for parameter optimization and
for performance testing, respectively. For parameter opti-
mization, our performance index is the median because it is
more robust against outlier scores. However, for performance
testing of a resulting set of optimized parameters, we use
the minimum of the 90 maximum scores (Min-Max score);
where each maximum score is the maximum score of each
overlapping slice, consisting of 10 games and overlapping
with the subsequent slice by 9 games. We consider that the
Min-Max score is a performance index that should indicate
the lower-bound performance at the competition, where the
maximum score of 10 games is used.

We adopt Evolutionary Strategy (ES) [4], which only uses
mutation, for parameter optimization. Our primary reason
for this is that each parameter has a specific role and thus
other evolutionary operations such as crossover might not
fit for this problem. Because the time to proceed from one
generation to the subsequent generation linearly increases
with the number of ES members, we need to restrict the
number of ES members in each generation. In particular, we
use (1+1) ES where a mutated child, whose mutation rate is
controlled by the 1/5 rule, is evaluated and compared with
its single parent in order to decide who will survive for the
next generation.

We divide parameter optimization into two stages. At
the first optimization stage either the distance parameters,
denoted by D, or the cost parameters, denoted by C, are
optimized with two possible initial values: the ICE Pambush
3’s original values, denoted by I , or random values, denoted
by R. In addition, if the optimization targets are the distance
parameters, the cost parameters are fixed to the ICE Pambush
3’ original values, and vice versa. At the second optimization
stage, the cost parameters are optimized if the first stage’s
optimization targets were the distance parameters, and vice
versa. The resulting optimized parameters from the first
optimization stage are fixed and the targeted parameters here
are initialized either by the ICE Pambush 3’s original values
or random values.

Let O(x, y) denote optimization of the x parameters with
the initial values set to y, where x are either D or C, and
y are either I or R. In addition, let F (x, y) represent fixing
of the x parameters with their values set to y, where x are
either D or C, and y are either I (applicable only at the first
optimization stage) or V (z) (applicable only at the second
optimization stage), V (z) having the values optimized at the

first optimization stage with the initial values z set to I or
R. All possible optimization schemes are summarized by a
pair of F (x, y) and O(x, y) as follows:

First Optimization Stage

1-1 F (D, I) and O(C, I)
1-2 F (D, I) and O(C,R)
1-3 F (C, I) and O(D, I)
1-4 F (C, I) and O(D,R)

Second Optimization Stage

2-1 F (C, V (I)) and O(D, I)
2-2 F (C, V (I)) and O(D,R)
2-3 F (C, V (R)) and O(D, I)
2-4 F (C, V (R)) and O(D,R)
2-5 F (D,V (I)) and O(C, I)
2-6 F (D,V (I)) and O(C,R)
2-7 F (D,V (R)) and O(C, I)
2-8 F (D,V (R)) and O(C,R)

Note that 2-1 and 2-2 follow 1-1, 2-3 and 2-4 follow 1-2, 2-5
and 2-6 follow 1-3, 2-7 and 2-8 follow 1-4. We also conduct
the following two optimization schemes 0-1 and 0-2 where
the distance parameters and cost parameters are optimized
simultaneously.

0-1 O(D, I) and O(C, I)
0-2 O(D,R) and O(C,R)

V. EVALUATION AND DISCUSSIONS

In our evaluation, all distance parameters have an integer
value between 0 and 49, and all cost parameters have
an integer value between 0 and 1000000. Each value is
converted from a real value x having the range between 0
and 1. The initial value of x is randomly assigned. During
the evolution process, x is mutated at each generation as
follows:

x = x + N(0, σ2)

where σ is set to 0.77. As mentioned in the previous section,
the 1/5 rule is used for controlling the mutation rate or
σ. In order to prevent too early changing of σ, we fix σ
until the median score among 10 games of a child at a
current generation, say, the ith generation, is greater than
the average between the median score of the first generation
parent and 14400 (the maximum score of level 1). From the
ith generation, σ is updated as follows:

• If the number of times that a child survived is less than
or equal to one for the last ten generations, then σ =
0.85σ;

• Otherwise, σ = (1/0.85)σ.
Figures 2, 3, and 4 show the median score among 10

games for each generation of the four schemes at the first
optimization stage and the first four schemes as well as
the last four schemes at the second optimization stage,
respectively. Figure 5 shows the results for 0-1 and 0-2. At
the first stage, scheme 1-4, in which the distance parameters
were optimized from randomly assigned initial values, shows
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Fig. 2. Median-score evolution at the first optimization stage

Fig. 3. Median-score evolution at the second optimization stage (the first
four schemes)

Fig. 4. Median-score evolution at the second optimization stage (the last
four schemes)

the best performance with the median score of 9820 at the
300th generation. At the second stage, schemes 2-7 and 2-8,
whose distance parameters were fixed to the values optimized
by scheme 1-4 at the first stage, have the median score of
10545 and 10555, respectively. From these results, one could
anticipate that schemes 2-7 and 2-8 would give a satisfactory
result in performance testing.

Figure 6 shows the Min-Max score of each scheme.
As expected, schemes 2-7 and 2-8 achieve a satisfactory
performance with the Min-Max score of 8870 and 9480,
respectively. In addition, scheme 2-8 is of the best perfor-
mance and has an improvement of 17% in the performance,
compared to the original ICE Pambush 3 whose Min-Max
score is 8120. However, this figure also indicates that some
schemes, such as 1-3, have lower performances than the
original one although their performances during evolution
monotonically increase. We conjecture that each of those

Fig. 5. Median-score evolution of 0-1 and 0-2

Fig. 6. The testing performance in terms of the Min-Max scores

schemes was trapped in a local optimum.
Figure 7 compares the score distributions, out of 100

games, of the original ICE Pambush 3 and scheme 2-8.
It can be seen that the score distribution of scheme 2-8
concentrates more on the upper half while that of the original
ICE Pambush 3 on the lower half. This result also confirms
the effectiveness of scheme 2-8.

Table I shows the set of distance parameters used in the
original ICE Pambush 3 and the one resulting from scheme
2-8 at the 300th generation while Table II shows the cost
parameters. Surprisingly, because D1 is less than D3 for
scheme 2-8, rule 1 will never be fired. This indicates that
ICE Pambush 3 using the set of parameters from this scheme
does no longer perform a stop and ambush at the first game
level. Regarding the cost, because C7 has been drastically
increased, ICE Pambush 3 with the parameters from scheme
2-8 will go to a corner with a much lower frequency than
the original ICE Pambush 3. As a result, although the same
set of rules is used, optimization of the distance and cost
parameters leads to another playing style.

VI. CONCLUSIONS AND FUTURE WORK

This work described an attempt to increase the perfor-
mance of our Ms Pac-Man controller ICE Pambush 3 by
optimizing its parameters using Evolutionary Strategy. Our
findings indicate that the best performance is from ICE
Pambush 3 with the set of parameters obtained from scheme
2-8. In addition, this set of parameters makes Ms Pac-Man
behave differently from the original one at the first game
level.
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TABLE I
DISTANCE PARAMETERS

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Original 8 5 4 6 4 10 10 9 20 10

2-8 5 16 9 41 44 3 31 38 10 31

TABLE II
COST PARAMETERS

C1 C2 C3 C4 C5 C6 C7

Original 500000 500000 500000 500000 500000 1000 5000
2-8 493141 765404 196308 741495 287633 6296 179269

Fig. 7. Score distribution of ICE Pambush 3 using the original parameter
set and the one resulting from scheme 2-8

We are currently extending parameter optimization to other
subsequent levels and attempting to circumvent the local
optima issue. As future work, we plan to evolve some, if
not all, rules using a hybrid of computational intelligence
techniques. In addition, we plan to explore supervised learn-
ing techniques for training the controller in certain situations,
such as critical situations.
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