
Investigation of Various Online Adaptation Methods of
Computer-Game AI Rulebase in Dynamic Scripting

Syota Osaka
Intelligent Computer

Entertainment Laboratory
Ritsumeikan University

1-1-1 Nojihigashi, Kusatsu
Shiga 525-8577, Japan

rs008023@se.ritsumei.ac.jp

Ruck Thawonmas
Intelligent Computer

Entertainment Laboratory
Ritsumeikan University

1-1-1 Nojihigashi, Kusatsu
Shiga 525-8577, Japan

ruck@ci.ritsumei.ac.jp

Tomoya Shibazaki
Intelligent Computer

Entertainment Laboratory
Ritsumeikan University

1-1-1 Nojihigashi, Kusatsu
Shiga 525-8577, Japan

rs018031@se.ritsumei.ac.jp

ABSTRACT
In this paper, we investigate various online adaptation meth-
ods of computer-game AI rulebase in a technique called Dy-
namic Scripting (DS). DS is a technique for balancing the
level of computer controlled characters that play computer
games against human players. It online updates rule weights
in rulebase that influence the behavior of the computer con-
trolled character. However, the weight updating mechanism
of DS is not effective if improper initialization of the rulebase
is done. In our previous work, we proposed a complementary
method to DS that replaces inefficient rules with randomly
generated rules. In the present work, we propose three more
methods and compare them with the previously proposed
one and with the original DS, using a simulator in which
one adaptive character duels against one hard-coded char-
acter (HC). Our finding is that the method that replaces an
inefficient rule with the rule least similar, among the given
candidates, to the inefficient one is of the best performance,
in terms of the winning rate against HC, for mediocre and
weak initial rulebase conditions.

Categories and Subject Descriptors
I.2.6 [Learning]: Knowledge acquisition, Parameter learn-
ing

General Terms
Game design

Keywords
Dynamic Scripting, Rulebase, Computer games, AI charac-
ters, Non player characters

1. INTRODUCTION
AI research on evolving game strategies has a relatively
long history starting from its applications to chess, check-

ers, and then now to many commercial games such as soccer
games [1]. Our research target is the fighting genre where
player controlled characters fight against other characters
controlled by computer.

For the fighting genre, balancing the level of the computer
controlled character (or AI character) with that of the player
is important [2]. In particular, in order to keep the game
challenging, it is important to dynamically increase the level
of the computer controlled one to the level that matches the
player’s level. This is because the player’s level normally in-
creases as he or she plays longer. Failure to do so will make
the player lose interest in the game. In practice, the vast
majority of AI characters are controlled by scripts. It is al-
most impossible to prepare hard-coded AI scripts in advance
that could perform the balancing task.

Among a variety of evolving game techniques, we focus on
Dynamic Scripting (DS) proposed by Spronck [3]. DS is an
unsupervised learning algorithm with a simple but efficient
mechanism for dynamically constructing a proper script by
a set of rules from given rulebase. It has already gained
interests from game industry [4]. In our previous work [5],
we proposed a method to complement DS for the case where
rulebase is not initially well designed. In such a case, the
original DS mechanism of updating rule weights does not
work. The proposed method replaces inefficient rules in the
rulebase with randomly generated rules.

In this paper, we propose three more methods for online
adaptation of rulebase and compare them with the one pro-
posed in [5] and with the original DS. Performance compari-
son is done using a simulator in which one adaptive character
duels against one hard-coded character. The rest of the pa-
per is organized as follows. In Section 2, the outline of DS
is given, followed by the description on the proposed meth-
ods. Section 3 describes the game simulator, and Section 4
discusses performance evaluation. Section 5 concludes the
paper and describes our future work.

2. DYNAMIC SCRIPTING WITH ONLINE
ADAPTATION OF RULEBASE

2.1 Basic Mechanism
The basic mechanism of DS is depicted in Fig. 1, and is
outlined as follows:

Administrator
CD-ROM Proc. 1st International Conference on Digital Interactive Media Entertainment and Arts 　　　　(DIME-ARTS 2006), Oct. 2006, Bangkok, Thailand.

Figure 1: Dynamic Scripting mechanism

1. Rulebase consisting of multiple rules is assigned to a
group of AI characters of the same type.

2. A set of rules are stochastically selected from the rule-
base, according to their weights, to construct the script
of the AI character.

3. The AI character fights against the player controlled
character according to the content of its script.

4. Each rule weight is updated according to the fighting
result.

5. Go to 2

2.2 Online Rulebase Adaptation Methods
Loopholes in the game design might lead to the presence of
inefficient rules in rulebase. Under this situation, DS could
not catch up with human players. To solve this problem,
we previously proposed a framework for online adaptation
of rulebase in [5]. The basic idea behind this framework is
that every rule with weight less than a given threshold is
discarded and replaced with a new rule not duplicate with
M rules previously discarded as well as all rules currently
stored in the rulebase. Therein, a method was proposed
that randomly generates a new rule for each discarded rule.
Henceforth, this method is called RAN.

In the present work, every discarded rule is replaced with
a rule selected from N such new rules. We propose three
methods, MOS, LES, and MIX, having different mechanisms
in rule selection. Each method is described below as follows:

MOS: Select the rule most similar to the rule with the high-
est weight in the rulebase.

LES: Select the rule least similar to the discarded rule.

MIX: Select the rule most similar to the rule with the high-
est weight in the rulebase and, at the same time, least
similar to the discarded one.

The similarity between two rules is determined by the in-
verse of the distance between them. For MIX, the rule with
the maximum value of α − β is selected, where α is the
distance to the discarded rule, and β the distance to the
rule with the highest weight in the rulebase. The definition
of distance and the description of the game simulator, for
performance evaluation, are given in the following section.

3. GAME SIMULATOR
3.1 Game System
As in [5], in our simulator, there are two AI characters, a
hard-coded character (HC) representing a human player and
an adaptive character based on DS (AC). Each character has
two parameters, HP (Hit Point) and MP (Magic Point). A
character wins when HP of its opponent becomes zero while
its HP remains. HP and MP of a character will be decreased
if it is attacked by the opponent. MP of a character will also
be decreased if it performs some particular actions. Table 1
shows the actions available to the two characters and their
relation to HP and MP. Rulebase consists of 50 rules, and
the weight of a rule is bounded to have its value between
0 and 1000. For each duel between HC and AC, 20 rules
are stochastically selected, according to their weights, from
the rulebase to construct the script of AC. An if-then rule
is represented by six digits described from left to right as
follows:

First digit: fixed to 1

Second digit HP condition of AC

Third digit: MP condition of AC

Fourth digit: HP condition of HC

Fifth digit: MP condition of HC

Sixth digit: action of AC

where, for each rule, all four conditions are connected by
AND operation.

Table 2 describes the parameters for both the conditional
part and the action part of a rule. In our simulator, the
following rules are not included in the rulebase because they
have no realistic meaning.

• all rules with the second digit = 5 or the fourth digit = 5

• all rules with the sixth digit = 0

• all rules with the third digit = 5 and the sixth digit ≥ 3

Henceforth, all other rules are called meaningful rules.

3.2 Distance Computation
With the above rule representation, the distance between
rules i and j, d(i, j), used for rule selection in Section 2.2, is
computed as follows:

d(i, j) = dcond(i, j) + γdact(i, j),

Table 1: Summary of the game actions and their relation to HP and MP

Action Type MP Consumption Action Description

HP attack type 1 0 Decrease HP of the opponent by 8 to 12 with the average value of 10
HP attack type 2 0 Decrease HP of the opponent by either 0 or 20 with the average value of 10
HP attack type 3 10 Decrease HP of the opponent by 18 to 22 with the average value of 20

MP attack 10 Decrease MP of the opponent by 18 to 22 with the average value of 20
Heal 10 Increase HP of itself by 28 to 32 with the average value of 30

Table 2: Description of the rule parameters

Parameter Value
Parameter Type

0 1 2
HP Condition always holds HP ≥ 75 50 ≤ HP < 75
MP Condition always holds MP ≥ 75 50 ≤ MP < 75

Action no action HP attack type 1 HP attack type 2

Parameter Value
Parameter Type

0 1 2
HP Condition 25 ≤ HP < 50 0 < HP < 25 HP = 0
MP Condition 25 ≤ MP < 50 10 ≤ MP < 25 MP < 10

Action HP attack type 3 MP attack heal

where dcond(i, j) and dact(i, j) represent the conditional-part
distance and the action-part distance between rules i and j,
respectively, and γ is an adjustment factor.

As shown in Table 2, every digit in the conditional part,
except the first digit, has a value indicating a range of the
corresponding parameter, and adjacent values indicate ad-
jacent ranges. As a result, we define the conditional-part
distance between two rules as the sum of the absolute dif-
ference between each conditional parameter of them. For
example, the conditional-part distance between rules 143205
and 120433 is 10, from |4− 2|+ |3− 0|+ |2− 4|+ |0− 3|.

On the contrary, adjacent values of the sixth digit do not al-
ways imply that the corresponding actions are similar. The
action-part distance between two rules is thus subjectively
defined and represented by the matrix shown below.

0

B

B

B

@

0 1 2 3 4
1 0 2 3 4
2 2 0 2 4
3 3 2 0 3
4 4 4 3 0

1

C

C

C

A

In the above matrix, the ijth element represents the distance
between actions i and j.

The adjustment factor γ is for balancing the conditional-
part distance and the action-part distance. It is determined
as follows:

γ =
average conditional part distance

average action part distance

Assuming for simplicity that parameter values are uniformly
assigned1, γ becomes 125/36.

1In this case, the average conditional-part distance is ((1×
10 + 2× 8 + 3× 6 + 4× 4 + 5× 2)/36)× 4, and the average
action-part distance is (1× 2 + 2× 6 + 3× 6 + 4× 6)/25).

Figure 2: Simulator flowchart

3.3 Simulation Steps
Figure 2 shows the flow chart of the simulator for a series of
duels between HC and AC. At the initialization step, 50 rules
are assigned to rulebase, and each rule weight is initialized
to 500. A duel starts from the rule selection step, where, as
mentioned earlier, 20 rules are stochastically selected from
the rulebase, according to their weights, to construct the
script of AC for that duel; in addition, each character is
assigned 100 HPs and 100 MPs.

At the HC and AC action execution step, an action of AC is
randomly selected for execution from the action part of one
of the script rules whose all four conditions hold. An action
of HC is selected and executed according to its pre-defined
rules, given in the next section.

Once a duel is over the weight of the ith rule, rule[i].weight,

(a) Strong Initial Rulebase

(b) Mediocre Initial Rulebase

(c) Weak Initial Rulebase

Figure 3: The winning rate of each method

in the script of AC is updated at the weight update step as
follows:

rule[i].weight =
min(max(rule[i].weight + HP(AC) – HP(HC), 0), 1000),

(1)
where HP(AC) and HP(HC) denote the remaining HP of
AC and that of HC at the end of the duel, respectively. At
the end of this step, all rules in the script are returned to
the rulebase.

At the rulebase adaptation step, every rule in the rulebase
with weight less than 20 is replaced with a new rule by one of
the methods in Section 2.2. Such a new rule is selected from
a set of N candidates, where N is set to 5. The parameters
of these candidates are randomly and uniformly assigned an
integer value from 0 to 5 for the conditional part and from
1 to 5 for the action part. The candidate parameters are

Table 3: The average and the standard deviation of

the winning rate at the 10000th duel

Initial Rulebase Type

Strong Mediocre WeakMethod
Avg. Std. Avg. Std. Avg. Std.

ORI 90.29 9.94 47.64 18.29 7.250 8.28
RAN 71.40 14.94 50.20 17.69 42.89 19.97
MOS 71.92 15.37 48.32 17.255 38.83 22.09
LES 72.30 15.35 55.32 17.24 49.98 18.81
MIX 72.08 15.25 51.37 17.68 46.75 19.61

subject to the condition that they define meaningful rules
not duplicate with M rules previously discarded as well as
all rules currently stored in the rulebase, where M is set to
100. The weight of a selected rule is then initialized to 500.

At the weight adjustment step, the weights of all rules in the
rulebase are adjusted such that their sum is equal to that at
the initialization step, i.e., 25000.

4. PERFORMANCE EVALUATION
We compared the performances of AC without the rulebase
adaptation step (henceforth, called ORI), RAN, MOS, LES,
and MIX, when each method dueled the same opponent HC
used in [5], under the same initial rulebase condition. The
performance index in use is the wining rate against the op-
ponent HC among the recent ten duels at the given num-
ber of duels; unless stated otherwise, it is simply called the
winning rate. Three types of initial rulebase, strong rule-
base, mediocre rulebase, and weak rulebase, were prepared
by trial-and-error selecting the initial 50 rules such that the
wining rate of ORI at the 300th duel was about 90%, 50%,
and 10%, respectively. For each method under each initial
rulebase condition, the experiment was composed of 1000
experimental trials. All results discussed below are average
values of 1000 experimental trials.

The aforementioned opponent HC was hard-coded as fol-
lows:

• If its MP ≥ 10 and its HP < 50 then heal

• If its MP ≥ 10 and its HP ≥ 50 then HP attack type 3

• Otherwise, HP attack type 1

Figure 3 shows the wining rate of each method over the
number of duels under each initial rulebase condition.

Table 3 lists the average number and the corresponding stan-
dard deviation of the winning rate at the 10000th duel of
each method.

The above results are summarized as follows:

• The performance of the original DS (ORI) depends
heavily on the quality of the initial rulebase. In par-
ticular, there is no sign of learning for the weak initial
rulebase condition.

(a) Mediocre Initial Rulebase

(b) Weak Initial Rulebase

Figure 4: The accumulated number of discarded

non-initial rules

• DS with methods for online adaptation of rulebase,
RAN, MOS, LES, and MIX, perform significantly bet-
ter than ORI for the weak initial rulebase condition.

• LES is of the best performance among all methods
for both the mediocre and weak initial rulebase condi-
tions.

Based on these observations, one question arises: why does
addition of a new rule most similar to the rule with the
highest weight in the rulebase, have less effect in the per-
formance than addition of a new rule least similar to the
discarded one? Our conjecture is as follows. In the begin-
ning of a duel sequence, a rule with the highest weight might
not always be an efficient rule while a discarded rule repre-
sents more precisely an inefficient rule, especially for both
the mediocre and weak initial rulebase conditions.

Figure 4 shows the accumulated number of rules that are
generated for replacing inefficient initial rules, but are later
discarded. Since the number of LES is less than that of both
MOS and MIX, The results in this figure validate the above
conjecture.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have investigated four methods that com-
plement Dynamic Scripting by replacing inefficient rules in
rulebase with new rules. As shown in our performance eval-
uation, LES, the method that replaces an inefficient rule
with the rule least similar, among the given candidates, to
the discarded one is of the best performance, in terms of
the winning rate, for both the mediocre and weak initial
rulebase conditions. In addition, its converged winning rate

under these two conditions is about 50, which represents a
challenging game level, not too easy or too difficult.

However, LES still requires a relatively large number of duels
to increase its performance. Research on how to increase the
learning speed is left as our future work.

6. ACKNOWLEDGMENTS
The first author was supported in part by the Ritsumeikan
University’s Kyoto Art and Entertainment Innovation Re-
search, a project of the 21st Century Center of Excellence
Program funded by Ministry of Education, Culture, Sports,
Science and Technology, Japan.

7. REFERENCES
[1] S.M. Lucas and G. Kendall. Evolutionary
computation and games. IEEE Computational

Intelligence Magazine 1(1):10-18, Feb. 2006.

[2] B. Pfeifer. Narrative Combat: Using AI to Enhance
Tension in an Action Game. In Game Programming

Gems 4, pages 315-324, 2004.

[3] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and
E. Postma. Adaptive Game AI with Dynamic
Scripting. Machine Learning, 63(3):217-248, 2006.

[4] P. Spronck. Dynamic Scripting. In Game AI

Programming Wisdom 3. Ed. Steve Rabin,
pages 661-675. Charles River Media, Hingham, MA,
2006.

[5] Ruck Thawonmas and Syota Osaka. A Method for
Adapting Computer-Game AI Rulebase. In DVD
Proc. ACM SIGCHI International Conference on
Advances in Entertainment Technology 2006 (ACE
2006), Hollywood, USA, Jun. 2006.

