
USING MONTE-CARLO PLANNING FOR MICRO-MANAGEMENT

IN STARCRAFT

Wang Zhe, Kien Quang Nguyen, Ruck Thawonmas, and Frank Rinaldo

Intelligent Computer Entertainment Laboratory

Ritsumeikan University

KEYWORDS

RTS games; StarCraft; Monte-Carlo Planning; Micro

Management

ABSTRACT

This paper presents an application of Monte-Carlo

planning for controlling units in a RTS game StarCraft.

We developed an original simulator for applying

Monte-Carlo Planning (MCPlan) to solve the problem of

random and simultaneous moves in the RTS game. We

also apply an greedy algorithm to model the

opponent in a simulation for improving MCPlan’s

performance. Experimental results are provided at the end

of this paper, which shows the potential of MCPlan in this

domain.

I. INTRODUCTION

StarCraft is one of the most popular RTS game developed

by Blizzard Entertainment. The extremely balanced

gameplay and easy access to the game engine not only

provides players with multiple options, but also enables it

to be an ideal platform to test different AI approaches. So

far, although some work has been done on building

human-level AI for StarCraft, because of the real-time

properties and largely unpredictable random, it is still a

challenging game for AI research.

The main issue in this paper focuses on the micro

management of StarCraft gameplay. Micro-management

is a series of actions that issue commands to each unit of

a certain group for maximizing their effectiveness during

combat. Good micro management is a significant part of

RTS game in which it can bring player advantages in the

game, even change the results of a whole match.

There have been a number of previous works that have

been done on both unit control issues and the application

of MC simulation in RTS games. Unit control problems

are usually handled by finite state machines, script or

neural networks etc. For example, Weber and Michael

used hand authoring ABL behaviors to handle

micro-management task in StarCraft (Weber 2011). A

Bayesian model is applied to StarCraft for unit control by

Gabriel and Pierre (Synnaeve 2011). Monte-Carlo method

in RTS games also can be found from previous work.

Such as applying MCPlan for high-level planning (Chung

2005), or combining Monte-Carlo method with non-linear

value function approximation (VFA) and text recognition

technique as a solution for large sequential decision

making problems (Branavan 2011). However, these

works mainly focus on high-level planning and MC

simulation can rarely be found in low-level AI modules

such as micro management.

Since MC simulation has an advantage of selecting the

best choice without relying on too much expert

knowledge, this enables the AI to explore possibilities

and perform creatively. Therefore, we try to build an

expert AI for micro-management in StarCraft by applying

MCPlan and test how it performs.

The contributions of this paper are as follows:

 Implementation of the MCPlan with expert knowledge

for micro-management in StarCraft.

 Design of a simulator for complex commercial RTS

game combat scenario and a general characterization.

II. METHODOLOGY

Monte Carlo Planning

MCPlan is a mechanism that is based on simulation and

does a stochastic sample of possible choices. It

determines the best statistical result after multiple

roll-outs. It is an effective method to handle random and

imperfect information problems with alternating moves,

such as chess and poker. A great advantage of MCPlan is

the reduction of expert knowledge required, instead of

RT
Text Box
Proc. of the 4th Annual Asian GAME-ON Conference on Simulation and AI in Computer Games (GAMEON ASIA 2012), Kyoto, Japan, pp. 33-35, Feb. 24-25, 2012.

defining every detail through expert biases; MCPlan

relies on an effective evaluation function.

Simulator Design

As one of the most important parts in MC Simulation, the

simulator is a model that is used to simulate reality and

aid in making predictions. In our case, the simulator is for

creating possible game scenarios of the near future.

However, unlike high-level strategy, for a micro-

management simulator, it has to emulate real-game moves

as much as possible as even a small detail could affect the

game result greatly.

Generally speaking, three major works in our simulator

are as follows:

A) Character modeling: Characters should be exactly

the same as in real game, including character’s

hit-points, attack range, special skills etc.

B) Map modeling: Map modeling should consider of

different terrains, characters’ location, and unit

overlapping problem.

C) Enemy behaviour modeling: Rather than randomly

move, we adopt  -greedy algorithm to define

enemies’ movement in simulator. The evaluation

function and plans for enemy heuristic are basically

the same as MCPlan AI.

III. APPLICATION TO STARCRAFT

We apply our MCPlan algorithm to micro-management

part of the game Starcraft by accessing the game engine

through BWAPI.

Plan Definition

We try to avoid too complicated a plan in order to give

MCPlan enough space for search. But expert bias is still

needed. So we mix few complex plans with simple plans.

In this way, we not only avoid too much expert

knowledge, but also try to improve the effectiveness of

plans.

Simulation roll-out

Each roll-out contains two plans: one is fixed and the

other one is stochastic. The fixed one is the certain plan

that is being chosen for simulation, so it is always be

executed first. After that, the program will randomly pick

another plan and continue the simulation process. After

simulating both plans, the evaluation step begins.

Search Algorithm

Here’s our algorithm for searching best plan, namely,

UCB1 algorithm.

i
i N

N
CRiUCB

ln
)(1  (1)

In the formula, i is index of each plan, presents the

reward that plan i obtained from the evaluation function.

C is a predefined constant, N and are the overall

number of run times and number of times that plan i

has been visited respectively.

The basic view of our MC simulation is as follows:

1) Loading predefined plans one by one to the

simulator.

2) Simulate each plan (both fixed one and random one),

evaluate the whole roll-out and reward the plan.

3) Choose the plan with the highest evaluation based

on UCB1 function, then simulate and reward it

again.

4) Repeat step 3.

5) Choose the plan with best average result for the AI

player in a real game.

Evaluation function

An evaluation function is used for measuring the

effectiveness of each plan in different situations. Our

evaluation function is designed based on individual units

and basically contains 4 aspects as seen below:

EGSPDMHPQ 4321   (2)

In this function, four elements are individual unit's

hit-point, damage to enemy, move speed and remained

energy respectively. And we manually set value for the

four weights based on expert bias.

IV. EXPERIMENTS

We designed three experiments to test MCPlan AI's by

comparing with other subjects. Each experiment is a

different combat scenario of Terran against Zerg.

Experiments ran on PCs with 3.20GHz CPU and 4G

RAM.

iR

iN



Experimental Scenarios

We did all the experiments in a small map with all plain

terrain and limited space (game map size 1616). Two

forces were placed in short distance but can't attack each

other at the beginning of game in order to make sure all

units get involved in combat as soon as possible.

The game techniques and skills that be used are : U-238

Shells, Stim packs for Terran Marine, healing for Terran

Medic and Metabolic Boost for Zerg Zergling. For more

detail of units and skills, we refer reader to blizzard

official website.

Experiment 1: Four Terran Marines against six Zerg

Zerglings.

Experiment 2: Three Terran Marines aginst 1 Zerg

Lurker.

Experiment 3: Five Terran Marines and one Terran medic

aginst six Zerg Zergling and 1 Zerg Lurker.

In order to highlight the effectiveness of micro

management, unbalanced military forces were distributed

to two sides. That is, Zerg force has advantages in all

experiments and is always controlled by the original AI of

StarCraft. We then applied different subjects to control

the Terran force against the Zerg. They are the original AI

of StarCraft, MCPlan AI, and various-level human

players respectively. Moreover, the difficulty of the

experiments are descending (E1>E2>E3), whereas the

complexity of scenarios are ascending (E1<E2<E3).

We ran each experiment 20 times for each subject, and

human players were allowed to get familiar with each

experiment by 5 trials and then compared their

performance by wins rate.

V. EXPERIMENT RESULTS

The experiment results are shown in Figure 1. The results

in this figure show the win rates of different subjects. It

shows that the original AI can hardly win a game in all

experiments under disadvantage situation and even failed

all games in experiment 1. The results also suggest that

MCPlan AI has potential to overcome unbalanced number

of units to defeat weaker AI, and has better performance

than beginner players, but still far from expert human

player whose wins rate over 90% on the average.

Figure 1: Win rate of subjects in three experiments
*OAI: Original AI of StarCraft *MCAI: Monte-Carlo Planning AI

VI. CONCLUSION AND FUTURE WORK

This paper has presented a preliminary work on solving

the problem of micro-management in RTS games. We

have described a mechanism of applying MCPlan to the

game Starcraft. After we analyzed and identified the

domain, we successfully developed a simulator for the

game and tested our method. Our work includes plans

design, game process simulation and evaluation function

creation. From our experiments, we got initial results

which indicated a promising potential of MCPlan in this

domain, but still not high enough for real play.

For future work, we intend to improve simulator which

requires more accurate game simulation and more efficient

evaluation function. We also try to seek a better way to

improve simulation speed, which is an essential problem

in Monte-Carlo simulation.

REFERENCES

B. Weber, M. Mateas, and A. Jhala, "Building

Human-Level AI for Real-Time Strategy Games", in

AAAI Fall Symposium on Advances in Cognitive

Systems (ACS 2011).

M. Chung, M. Buro, and J. Schaeffer, "Monte Carlo

Planning in RTS Games", in IEEE Symposium on

Computational Intelligence and Games (CIG), 2005.

S.R.K. Branavan, D. Silver, R. Barzilay, "Non-Linear
Monte-Carlo Search in Civilization II," in IJCAI
2011.

G. Synnaeve and P. Bessiere, "A Bayesian Model for RTS

Units Control Applied to StarCraft," in IEEE

Conference on Computational Intelligence and Games

(CIG), 2011.

0%

20%

40%

60%

80%

100%

EXP1 EXP2 EXP3

OAI 0% 5% 5%

MCAI 10% 50% 35%

Beginner 5% 45% 15%

Expert 90% 100% 100%

OAI
MCAI
Beginner
Expert

