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ABSTRACT 

This paper presents an application of Monte-Carlo 

planning for controlling units in a RTS game StarCraft. 

We developed an original simulator for applying 

Monte-Carlo Planning (MCPlan) to solve the problem of 

random and simultaneous moves in the RTS game. We 

also apply an greedy  algorithm to model the 

opponent in a simulation for improving MCPlan’s 

performance. Experimental results are provided at the end 

of this paper, which shows the potential of MCPlan in this 

domain. 

  

I. INTRODUCTION 

StarCraft is one of the most popular RTS game developed 

by Blizzard Entertainment. The extremely balanced 

gameplay and easy access to the game engine not only 

provides players with multiple options, but also enables it 

to be an ideal platform to test different AI approaches. So 

far, although some work has been done on building 

human-level AI for StarCraft, because of the real-time 

properties and largely unpredictable random, it is still a 

challenging game for AI research.  

 

The main issue in this paper focuses on the micro 

management of StarCraft gameplay. Micro-management 

is a series of actions that issue commands to each unit of 

a certain group for maximizing their effectiveness during 

combat. Good micro management is a significant part of 

RTS game in which it can bring player advantages in the 

game, even change the results of a whole match. 

 

There have been a number of previous works that have 

been done on both unit control issues and the application 

of MC simulation in RTS games. Unit control problems 

are usually handled by finite state machines, script or 

neural networks etc. For example, Weber and Michael 

used hand authoring ABL behaviors to handle 

micro-management task in StarCraft (Weber 2011). A 

Bayesian model is applied to StarCraft for unit control by 

Gabriel and Pierre (Synnaeve 2011). Monte-Carlo method 

in RTS games also can be found from previous work. 

Such as applying MCPlan for high-level planning (Chung 

2005), or combining Monte-Carlo method with non-linear 

value function approximation (VFA) and text recognition 

technique as a solution for large sequential decision 

making problems (Branavan 2011). However, these 

works mainly focus on high-level planning and MC 

simulation can rarely be found in low-level AI modules 

such as micro management.  

 

Since MC simulation has an advantage of selecting the 

best choice without relying on too much expert 

knowledge, this enables the AI to explore possibilities 

and perform creatively. Therefore, we try to build an 

expert AI for micro-management in StarCraft by applying 

MCPlan and test how it performs. 

The contributions of this paper are as follows: 

 Implementation of the MCPlan with expert knowledge 

for micro-management in StarCraft. 

 Design of a simulator for complex commercial RTS 

game combat scenario and a general characterization. 

 

II. METHODOLOGY 

Monte Carlo Planning 

MCPlan is a mechanism that is based on simulation and 

does a stochastic sample of possible choices. It 

determines the best statistical result after multiple 

roll-outs. It is an effective method to handle random and 

imperfect information problems with alternating moves, 

such as chess and poker. A great advantage of MCPlan is 

the reduction of expert knowledge required, instead of 
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defining every detail through expert biases; MCPlan 

relies on an effective evaluation function. 

 

Simulator Design 

As one of the most important parts in MC Simulation, the 

simulator is a model that is used to simulate reality and 

aid in making predictions. In our case, the simulator is for 

creating possible game scenarios of the near future. 

However, unlike high-level strategy, for a micro- 

management simulator, it has to emulate real-game moves 

as much as possible as even a small detail could affect the 

game result greatly.  

 

Generally speaking, three major works in our simulator 

are as follows: 

A) Character modeling: Characters should be exactly 

the same as in real game, including character’s 

hit-points, attack range, special skills etc. 

B) Map modeling: Map modeling should consider of 

different terrains, characters’ location, and unit 

overlapping problem.  

C) Enemy behaviour modeling: Rather than randomly 

move, we adopt  -greedy algorithm to define 

enemies’ movement in simulator. The evaluation 

function and plans for enemy heuristic are basically 

the same as MCPlan AI.  

 

III. APPLICATION TO STARCRAFT 

We apply our MCPlan algorithm to micro-management 

part of the game Starcraft by accessing the game engine 

through BWAPI. 

Plan Definition 

We try to avoid too complicated a plan in order to give 

MCPlan enough space for search. But expert bias is still 

needed. So we mix few complex plans with simple plans. 

In this way, we not only avoid too much expert 

knowledge, but also try to improve the effectiveness of 

plans.  

Simulation roll-out 

Each roll-out contains two plans: one is fixed and the 

other one is stochastic. The fixed one is the certain plan 

that is being chosen for simulation, so it is always be 

executed first. After that, the program will randomly pick 

another plan and continue the simulation process. After 

simulating both plans, the evaluation step begins.  

 

Search Algorithm 

Here’s our algorithm for searching best plan, namely, 

UCB1 algorithm.  
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In the formula, i is index of each plan, presents the 

reward that plan i obtained from the evaluation function. 

C is a predefined constant, N and          are the overall 

number of run times and number of times that plan i  

has been visited respectively. 

The basic view of our MC simulation is as follows: 

1) Loading predefined plans one by one to the 

simulator. 

2) Simulate each plan (both fixed one and random one), 

evaluate the whole roll-out and reward the plan. 

3) Choose the plan with the highest evaluation based 

on UCB1 function, then simulate and reward it 

again. 

4) Repeat step 3. 

5) Choose the plan with best average result for the AI 

player in a real game. 

Evaluation function 

An evaluation function is used for measuring the 

effectiveness of each plan in different situations. Our 

evaluation function is designed based on individual units 

and basically contains 4 aspects as seen below:  
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In this function, four elements are individual unit's 

hit-point, damage to enemy, move speed and remained 

energy respectively. And we manually set value for the 

four weights  based on expert bias. 

 

IV. EXPERIMENTS 

We designed three experiments to test MCPlan AI's by 

comparing with other subjects. Each experiment is a 

different combat scenario of Terran against Zerg. 

Experiments ran on PCs with 3.20GHz CPU and 4G 

RAM.  
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Experimental Scenarios  

We did all the experiments in a small map with all plain 

terrain and limited space (game map size 1616). Two 

forces were placed in short distance but can't attack each 

other at the beginning of game in order to make sure all 

units get involved in combat as soon as possible. 

 

The game techniques and skills that be used are : U-238 

Shells, Stim packs for Terran Marine, healing for Terran 

Medic and Metabolic Boost for Zerg Zergling. For more 

detail of units and skills, we refer reader to blizzard 

official website. 

Experiment 1: Four Terran Marines against six Zerg 

Zerglings.   

Experiment 2: Three Terran Marines aginst 1 Zerg 

Lurker.  

Experiment 3: Five Terran Marines and one Terran medic 

aginst six Zerg Zergling and 1 Zerg Lurker. 

 

In order to highlight the effectiveness of micro 

management, unbalanced military forces were distributed 

to two sides. That is, Zerg force has advantages in all 

experiments and is always controlled by the original AI of 

StarCraft. We then applied different subjects to control 

the Terran force against the Zerg. They are the original AI 

of StarCraft, MCPlan AI, and various-level human 

players respectively. Moreover, the difficulty of the 

experiments are descending (E1>E2>E3), whereas the 

complexity of scenarios are ascending (E1<E2<E3).  

 

We ran each experiment 20 times for each subject, and 

human players were allowed to get familiar with each 

experiment by 5 trials and then compared their 

performance by wins rate.  

 

V. EXPERIMENT RESULTS 

The experiment results are shown in Figure 1. The results 

in this figure show the win rates of different subjects. It 

shows that the original AI can hardly win a game in all 

experiments under disadvantage situation and even failed 

all games in experiment 1. The results also suggest that 

MCPlan AI has potential to overcome unbalanced number 

of units to defeat weaker AI, and has better performance 

than beginner players, but still far from expert human 

player whose wins rate over 90% on the average. 

 

Figure 1: Win rate of subjects in three experiments 
*OAI: Original AI of StarCraft  *MCAI: Monte-Carlo Planning AI 

 

 

VI.  CONCLUSION AND FUTURE WORK 

This paper has presented a preliminary work on solving 

the problem of micro-management in RTS games. We 

have described a mechanism of applying MCPlan to the 

game Starcraft. After we analyzed and identified the 

domain, we successfully developed a simulator for the 

game and tested our method. Our work includes plans 

design, game process simulation and evaluation function 

creation. From our experiments, we got initial results 

which indicated a promising potential of MCPlan in this 

domain, but still not high enough for real play.  

 

For future work, we intend to improve simulator which 

requires more accurate game simulation and more efficient 

evaluation function. We also try to seek a better way to 

improve simulation speed, which is an essential problem 

in Monte-Carlo simulation. 
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