
A HYBRID DIFFERENTIAL EVOLUTION METHOD
AND ITS APPLICATION TO THE PHYSICAL TRAVELLING SALESMAN PROBLEM

Bang Le Hai, Takashi Ashida, Ruck Thawonmas, and Frank Rinaldo

Intelligent Computer Entertainment Laboratory

Ritsumeikan University

ABSTRACT

Differential Evolution (DE) is a simple and efficient
evolutionary algorithm for optimization problems over
continuous space. A variant of DE is the Down-hill Simplex
method based on Differential Evolution (DSM DE) which
has the advantage of converging faster than DE. However,
the problem with DSM DE is that it doesn’t guarantee to
converge to a global optimum. In this paper, we present a
way to improve DE by combining DE with DSM DE and
the application of the new method to the problem of finding
the optimum path in the physical travelling salesman
problem.

I. INTRODUCTION

The physical travelling salesman problem

The Physical Travelling Salesman Problem (PTSP) is a
modification of the well-known combinatorial optimization
problem, the Travelling Salesman Problem (TSP). PTSP is a
single player, real-time game, where the objective is to
direct the agent to visit all waypoints scattered around a map
as quickly as possible. PTSP can be seen as an abstract
representation of video games characterized by two game
elements: order selection, and steering. Examples of such
games include CrystalQuest, XQuest and Crazy Taxi.

In the current PTSP competition1, each map contains 10
waypoints and multiple obstacles. Figure 1 below shows an
example of a map with obstacles and waypoints

Figure 1 An example of a map

Differential Evolution (DE)

The DE algorithm [1] is a population based algorithm
like genetic algorithms using the similar operators:
crossover, mutation and selection. The main difference
between DE and genetic algorithms is that genetic
algorithms rely on crossover while DE relies on a mutation
operation. DE has been proven as a simple, fast and efficient
way to optimize functions in continuous space. Below are
the main steps of DE, where D is the number of dimensions.

1 http://www.ptsp‐game.net/

1. Population initialization: NP vectors are chosen
randomly to form the population.

2. Mutation: A target vector ݔ is chosen randomly
from the population, and a mutant vector ݒ is
generated according to

ݒ ൌ ଵݔ 	ܨ ൈ ሺݔଶ 	െ	ݔଷ) (1)

where ଵݔ ଶݔ , ଷݔ , are three vectors randomly
chosen from the population (ݔ ,ݔଵ, ݔଶ and ݔଷ are
mutually different); ܨ	is a real constant factor.

3. Crossover: a trial vector ݑ is formed by mixing the
target vector ݔ with the mutant vector ݒ:

ݑ 	ൌ 	 ൜
݀݊ܽݎሺ	݂݅	ݒ 	 ݅	ݎ	ሻܴܥ ൌ 	 ݊ݎ
݀݊ܽݎሺ	݂݅	ݔ 	 ݅	݀݊ܽ	ሻܴܥ ് 	 ݊ݎ

	

where i=1, 2,…, D; ݀݊ܽݎ ∈ ሾ0, 1ሿ is a random
number; ܴܥ ∈ ሾ0, 1ሿ is the crossover constant;
݊ݎ ∈ 1,2, … , .is a randomly chosen index ܦ

4. Selection: the trial vector is compared to the target
vector using a greedy criterion. If vector ݑ has a
better cost function value than ݔ then ݔ is replaced
by ݑ, otherwise ݔ is retained.

5. Repeat execution from step 2 to step 4 until a
stopping criterion is met, usually a maximum
number of iterations.

Down-hill Simplex method based Differential Evolution
(DSM DE)

DSM DE [2] is a variant of DE using Down-hill simplex
method [3]. The difference between DSM DE and classical
DE is at the mutation step, in DSM DE the mutant vector is
generated by

ݒ ൌ ݔ	 	ܨ ൈ ሺݔ௦௧ 	ݔ௪௦௧ሻ (2)

where ݔ௦௧ is respectively the vector which has	௪௦௧ݔ	 ,
the best cost function value and the vector which has the
worst cost function value among 3 vector ݔଵ, ݔଶ, ݔଷ	and
 .is the remaining one	ݔ

Combination of DSM DE and classical DE

Our experiments with DSM DE on many function
optimization problems showed that DSM DE converges fast
at first but is easily trapped in a local optimum. DE by
contrast, has slower convergence speed but guarantees to
converge to a global optimum with high confidence. Our
idea is first using DSM DE to boost the speed of
convergence and then use classical DE to find the true
global optimum. The details are below:

At mutation step, we choose three random vectors ݔଵ,
 , whereݒ ,ݒ ଷ and generate two mutant vectorsݔ ,ଶݔ
 is generated	ݒis generated according to (1) and	ݒ
according to (2)

The final mutant vector ݒ is created by mixing ݒ	and ݒ.
This process is done by first determining the number of

The 1st IEEE Global Conference on Consumer Electronics 2012

978-1-4673-1501-2/12/$31.00 ©2012 IEEE 270

positions to mix (௫ܰ) by (3) below, and then replacing the
values at ௫ܰ 	 random positions on ݒ with the values of
corresponding positions on ݒ.

௫ܰ ൌ 	ܰ௫ 	ൈ	
ݔܨ

ݐݎܽݐݏܨ
 (3)

where ܰ௫	is a fixed number, ܨ௫	is the cost function value
of target vector ܨ ,ݔ௦௧௧	is the cost function value of the
population after initialization. (Note that we assume the task
of optimization here is function miminization).

II. APPLICATION OF THE HYBRID DE IN TPSP

Lehmer code

To use DE in this game, we used Lehmer code to
represent a path as a chromosome. The definition of Lehmer
code is as follows:

if ܲ ൏ ܲ, ଵܲ, ଶܲ, … , ܲିଵ 	is a permutation of the set of
n element 0, 1, 2	 … , ݊ െ 1 then the Lehmer code of the
permutation ܲ is a sequence of the numbers

Lሺܲሻ ൌ	൏ ,ሺܲሻܮ ,ሺܲሻଵܮ … , ሺܲሻିଵܮ
where ܮሺܲሻ = #	ሼj i ∶ 	 ܲ ൏ 	 ܲሽ. In other words the term

ሺܲሻ counts the number of terms in ሺܮ ܲ, ଵܲ, ଶܲ, … , ܲିଵሻ to
the right of ܲ that are smaller than it, a number between 0
and ݊ െ ݅ െ 1.

In this game, we numbered the waypoints from 0 to 9, so
a path (solution) can be seen as a permutation of 10
elements 	ሺ0,1, . . . , 9ሻ.

With the use of Lehmer code, we can define some
operations on permutation as below:
If ܲ, are two permutations of n elements ൏ ܣ 0, 1, …	, ݊

 ܲ ܣ ൌ ሺܲሻܮଵሾሺିܮ	 	ܮሺܣሻሻ	mod	n,… ሿ
 ܲ െ ܣ ൌ ሺܲሻܮଵሾሺିܮ	 െ	ܮሺܣሻሻ	mod	n,… ሿ
 ܲ	 ൈ ݇ ൌ ሺܲሻܮሺݎଵሾ݂݈ିܮ	 ൈ ݇ሻ	mod	n,… ሿ (k is a real

number).

The use of the hybrid DE in the game

From this point, for convenience, when we say “evolve
the population from index i”, that means only the part
starting from index i of the Lehmer code of individuals in
the population is used for mutation and crossover. The part
from index 0 to i – 1 is the same for all the individuals in the
population and kept unchanged during evolution.

Below is the process in detail:
 At the beginning of the game (time for constructing the

controller)
1. Set the current nearest waypoint as the first waypoint

to visit. So if we define the solution path as an array s,
we set s[0] by the number attached to the nearest
waypoint.

2. Set i = 1, initialize the population and evolve the
population from index i.

3. At the end of this stage, set i = i + 1 and choose the
current best individual bP in the population and set s[1]
= bP[1]

 When the game has started, at each step:
+ If the ship is reaching the waypoint s[i], evolve the

population from index i + 2
+ If the ship has reached the waypoint s[i]:

1. Choose s[i+1] as the current target waypoint
2. Choose the current best individual bP in the
population and set s[i+2] = bP [i+2], s[i+2] will be
waypoint visited next after s[i+1]
3. Set i=i+1

When there are only 3 waypoints left, the total number of
candidates for the solution path is reduced to 6. At this
point, we decide to stop using DE and instead use
simulation to get the exact time to visit 3 left points in
each case and choose the best one.

III. EXPERIMENTS AND RESULTS

Below are the results of the application of the new
method to the PTSP compared to the nearest neighbor
heuristic and the classical DE. Table 1 shows the average
time spent of each controller. The controller which
implements the hybrid DE or DE runs 50 times on each map.
The constants are set to ܨ ;0.9 = ܴܥ	0.5 =; ܰ௫	= D, NP =
25.

Table 1 Comparisons of different controllers
 NN Hybrid DE DE
Map 1 1946 1734.52 1808.82
Map 2 1469 1464.02 1390.84
Map 3 1406 1330.18 1332.86
Map 4 2071 1984.86 1949.62
Map 5 2119 2050.76 2069.64
Map 6 2001 1921.02 1929.24
Map 7 2190 2041.8 2037.3
Map 8 1838 1538.48 1542.714

IV. CONCLUSION

In this paper we presented a new hybrid DE method by
combining the classical DE with the DSM DE and how to
apply it to find a good path in the PTSP. The results showed
that the hybrid DE can be applied quite well to the PTSP
and it generally has better results than the nearest neighbor
heuristic. Compared with the classical DE algorithm, the
new method is a little bit better although in some cases, the
classical DE gives better results. The reason is that the spent
time by the ship to reach all the waypoints does not only
depend on the length but also the complexity of the path. In
our current implementation, we used a simple way to
evaluate the length and complexity of the path and in the
future we’d like to find a way to evaluate more accurately
the time spent for a given path in order to achieve better
results.

REFERENCES

[1] R. Storn, “Differential Evolution, A Simple and
Efficient Heuristic Strategy for Global Optimization
over Continuous Spaces”, Journal of Global
Optimization, Vol. 11, pp. 341-359, 1997.

 [2] D. Kamiyama, K. Tamura, and K. Yasuda, “Down-hill

Simplex Method Based Differential Evolution”, The
transactions of the Institute of Electrical Engineers of
Japan. C, 130(7), pp. 1271-1272, 2010. (in Japanese)

[3] J.A. Nelder and R. Mead, “A Simplex Method for
Function Minimization”, Computer Journal, Vol. 7, pp.
308-313, 1965.

i

This part is kept

unchanged

This part is used

to evolve

271

