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ABSTRACT 
 

Differential Evolution (DE) is a simple and efficient 
evolutionary algorithm for optimization problems over 
continuous space. A variant of DE is the Down-hill Simplex 
method based on Differential Evolution (DSM DE) which 
has the advantage of converging faster than DE. However, 
the problem with DSM DE is that it doesn’t guarantee to 
converge to a global optimum. In this paper, we present a 
way to improve DE by combining DE with DSM DE and 
the application of the new method to the problem of finding 
the optimum path in the physical travelling salesman 
problem. 
 
I. INTRODUCTION 

 

The physical travelling salesman problem 
 

The Physical Travelling Salesman Problem (PTSP) is a 
modification of the well-known combinatorial optimization 
problem, the Travelling Salesman Problem (TSP). PTSP is a 
single player, real-time game, where the objective is to 
direct the agent to visit all waypoints scattered around a map 
as quickly as possible. PTSP can be seen as an abstract 
representation of video games characterized by two game 
elements: order selection, and steering. Examples of such 
games include CrystalQuest, XQuest and Crazy Taxi. 

In the current PTSP competition1, each map contains 10 
waypoints and multiple obstacles. Figure 1 below shows an 
example of a map with obstacles and waypoints 

 

 
Figure 1 An example of a map 

 
Differential Evolution (DE) 
 

The DE algorithm [1] is a population based algorithm 
like genetic algorithms using the similar operators: 
crossover, mutation and selection. The main difference 
between DE and genetic algorithms is that genetic 
algorithms rely on crossover while DE relies on a mutation 
operation. DE has been proven as a simple, fast and efficient 
way to optimize functions in continuous space. Below are 
the main steps of DE, where D is the number of dimensions. 

                                                            
1 http://www.ptsp‐game.net/ 

1. Population initialization: NP vectors are chosen 
randomly to form the population. 

2. Mutation: A target vector ݔ  is chosen randomly 
from the population, and a mutant vector ݒ  is 
generated according to 
 

ݒ ൌ ଵݔ  	ܨ ൈ ሺݔଶ 	െ	ݔଷ) (1) 
 

where ଵݔ ଶݔ , ଷݔ ,  are three vectors randomly 
chosen from the population (ݔ ,ݔଵ, ݔଶ and ݔଷ are 
mutually different); ܨ	is a real constant factor. 

3. Crossover: a trial vector ݑ is formed by mixing the 
target vector ݔ with the mutant vector ݒ: 
 

ݑ 	ൌ 	 ൜
݀݊ܽݎሺ	݂݅	ݒ 	 ݅	ݎ	ሻܴܥ ൌ 	 ݊ݎ
݀݊ܽݎሺ	݂݅	ݔ 	 ݅	݀݊ܽ	ሻܴܥ ് 	 ݊ݎ

	

 
where i=1, 2,…, D; ݀݊ܽݎ ∈ ሾ0, 1ሿ  is a random 
number; ܴܥ ∈ ሾ0, 1ሿ  is the crossover constant; 
݊ݎ ∈ 1,2, … ,  .is a randomly chosen index ܦ

4. Selection: the trial vector is compared to the target 
vector using a greedy criterion. If vector ݑ has a 
better cost function value than ݔ then ݔ is replaced 
by ݑ, otherwise ݔ is retained. 

5. Repeat execution from step 2 to step 4 until a 
stopping criterion is met, usually a maximum 
number of iterations. 

 
Down-hill Simplex method based Differential Evolution 
(DSM DE) 
 

DSM DE [2] is a variant of DE using Down-hill simplex 
method [3]. The difference between DSM DE and classical 
DE is at the mutation step, in DSM DE the mutant vector is 
generated by 
 

ݒ ൌ ݔ	  	ܨ ൈ ሺݔ௦௧ 	ݔ௪௦௧ሻ      (2) 
 
where ݔ௦௧  is respectively the vector which has	௪௦௧ݔ	 ,
the best cost function value and the vector which has the 
worst cost function value among 3 vector ݔଵ, ݔଶ, ݔଷ	and 
 .is the remaining one	ݔ
 
Combination of DSM DE and classical DE 
 

Our experiments with DSM DE on many function 
optimization problems showed that DSM DE converges fast 
at first but is easily trapped in a local optimum. DE by 
contrast, has slower convergence speed but guarantees to 
converge to a global optimum with high confidence. Our 
idea is first using DSM DE to boost the speed of 
convergence and then use classical DE to find the true 
global optimum. The details are below: 

At mutation step, we choose three random vectors ݔଵ, 
 , whereݒ ,ݒ ଷ and generate two mutant vectorsݔ ,ଶݔ
 is generated	ݒis generated according to (1) and	ݒ
according to (2) 

The final mutant vector ݒ is created by mixing ݒ	and ݒ. 
This process is done by first determining the number of 
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positions to mix ( ௫ܰ) by (3) below, and then replacing the 
values at ௫ܰ 	 random positions on ݒ  with the values of 
corresponding positions on ݒ.  

 

௫ܰ ൌ 	ܰ௫ 	ൈ	
ݔܨ

ݐݎܽݐݏܨ
 (3) 

where ܰ௫	is a fixed number, ܨ௫	is the cost function value 
of target vector ܨ ,ݔ௦௧௧	is the cost function value of the 
population after initialization. (Note that we assume the task 
of optimization here is function miminization). 
 
II.  APPLICATION OF THE HYBRID DE IN TPSP 
 

Lehmer code 
 

To use DE in this game, we used Lehmer code to 
represent a path as a chromosome. The definition of Lehmer 
code is as follows: 

if ܲ ൏ ܲ, ଵܲ, ଶܲ, … , ܲିଵ 	is a permutation of the set of 
n element 0, 1, 2	 … , ݊ െ 1 then the Lehmer code of the 
permutation ܲ is a sequence of the numbers 

Lሺܲሻ ൌ	൏ ,ሺܲሻܮ ,ሺܲሻଵܮ … ,  ሺܲሻିଵܮ
where ܮሺܲሻ = #	ሼj  i ∶ 	 ܲ ൏ 	 ܲሽ. In other words the term 

ሺܲሻ counts the number of terms in ሺܮ ܲ, ଵܲ, ଶܲ, … , ܲିଵሻ to 
the right of ܲ that are smaller than it, a number between 0 
and ݊ െ ݅ െ 1. 

In this game, we numbered the waypoints from 0 to 9, so 
a path (solution) can be seen as a permutation of 10 
elements 	ሺ0,1, . . . , 9ሻ. 

With the use of Lehmer code, we can define some 
operations on permutation as below: 
If ܲ, are two permutations of n elements  ൏ ܣ 0, 1, …	, ݊   

 ܲ  ܣ ൌ ሺܲሻܮଵሾሺିܮ	 	ܮሺܣሻሻ	mod	n,… ሿ  
 ܲ െ ܣ ൌ ሺܲሻܮଵሾሺିܮ	 െ	ܮሺܣሻሻ	mod	n,… ሿ  
 ܲ	 ൈ ݇ ൌ ሺܲሻܮሺݎଵሾ݂݈ିܮ	 ൈ ݇ሻ	mod	n,… ሿ (k is a real 

number). 
 
The use of the hybrid DE in the game 
 

From this point, for convenience, when we say “evolve 
the population from index i”, that means only the part 
starting from index i of the Lehmer code of individuals in 
the population is used for mutation and crossover. The part 
from index 0 to i – 1 is the same for all the individuals in the 
population and kept unchanged during evolution. 
 
 
 
 
 
 
 
Below is the process in detail: 
 At the beginning of the game (time for constructing the 

controller) 
1. Set the current nearest waypoint as the first waypoint 

to visit. So if we define the solution path as an array s, 
we set s[0] by the number attached to the nearest 
waypoint. 

2. Set i = 1, initialize the population and evolve the 
population from index i. 

3. At the end of this stage, set i = i + 1 and choose the 
current best individual bP in the population and set s[1] 
= bP[1] 

 When the game has started, at each step: 
+ If the ship is reaching the waypoint s[i], evolve the 

population from index i + 2 
+ If the ship has reached the waypoint s[i]: 

1.  Choose s[i+1] as the current target waypoint 
2. Choose the current best individual bP in the 
population and set s[i+2] = bP [i+2], s[i+2] will be 
waypoint visited next after s[i+1] 
3.  Set i=i+1 

When there are only 3 waypoints left, the total number of 
candidates for the solution path is reduced to 6. At this 
point, we decide to stop using DE and instead use 
simulation to get the exact time to visit 3 left points in 
each case and choose the best one. 
  

III.  EXPERIMENTS AND RESULTS 
 

Below are the results of the application of the new 
method to the PTSP compared to the nearest neighbor 
heuristic and the classical DE. Table 1 shows the average 
time spent of each controller. The controller which 
implements the hybrid DE or DE runs 50 times on each map. 
The constants are set to ܨ ;0.9 = ܴܥ	0.5 =; ܰ௫	= D, NP = 
25. 

Table 1 Comparisons of different controllers 
 NN Hybrid DE DE 
Map 1 1946 1734.52 1808.82 
Map 2 1469 1464.02 1390.84 
Map 3 1406 1330.18 1332.86 
Map 4 2071 1984.86 1949.62 
Map 5 2119 2050.76 2069.64 
Map 6 2001 1921.02 1929.24 
Map 7 2190 2041.8 2037.3 
Map 8 1838 1538.48 1542.714 

 

 
IV.  CONCLUSION  
 

In this paper we presented a new hybrid DE method by 
combining the classical DE with the DSM DE and how to 
apply it to find a good path in the PTSP. The results showed 
that the hybrid DE can be applied quite well to the PTSP 
and it generally has better results than the nearest neighbor 
heuristic. Compared with the classical DE algorithm, the 
new method is a little bit better although in some cases, the 
classical DE gives better results. The reason is that the spent 
time by the ship to reach all the waypoints does not only 
depend on the length but also the complexity of the path. In 
our current implementation, we used a simple way to 
evaluate the length and complexity of the path and in the 
future we’d like to find a way to evaluate more accurately 
the time spent for a given path in order to achieve better 
results. 
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