
MONTE-CARLO PLANNING FOR UNIT CONTROL IN STARCRAFT

Zhe Wang, Kien Quang Nguyen, Ruck Thawonmas, and Frank Rinaldo

Intelligent Computer Entertainment Laboratory

Ritsumeikan University

ABSTRACT

This paper presents an application of Monte-Carlo

planning (MCPlan) to controlling units in a RTS game

StarCraft. We apply an greedy algorithm to model

the opponent in a simulation for improving MCPlan’s

performance. Experimental results are provided at the end

of this paper, which show the potential of MCPlan in this

domain.

I. INTRODUCTION

StarCraft is one of the most popular RTS game developed

by Blizzard Entertainment. The extremely balanced

gameplay and easy access to the game engine not only

provides players with multiple options, but also enables it

to be an ideal platform to test various AI approaches.

However, because of its real-time property and largely

unpredictable randomness, it is a challenging game for AI

research.

In this paper we focus on the micro management of

StarCraft gameplay. Micro-management is a series of

actions that issue commands to each unit of a certain

group for maximizing their effectiveness during combat.

It is a significant part in RTS game because it can bring

players great advantages in the game.

Monte Carlo Planning

MCPlan is a mechanism based on simulation and does a

stochastic sample of possible choices. It is an effective

method to handle random and imperfect information

issues with alternating moves by determining the best

result after multiple roll-outs. A great advantage of

MCPlan is the reduction of expert knowledge required, it

only need an effective evaluation function.

Previous work has been done on both unit control and the

MC-simulation application. Unit control is usually

handled by finite state machines, scripts or neural

networks, etc. For example, Weber and Michael used

hand authoring ABL behaviors to handle

micro-management task in StarCraft [1]. A Bayesian

model was applied to StarCraft for unit control by Gabriel

and Pierre [2]. But they all need lots of expert knowledge.

Monte-Carlo method in RTS games can also be found

from previous work. Such example include works

applying MCPlan to high-level planning [3], or

combining Monte-Carlo method with non-linear value

function approximation (VFA) and text recognition

technique as a solution for large sequential decision

making problems [4]. However, these works mainly focus

on high-level planning, and MC simulation can rarely be

found in low-level AI modules such as micro

management.

The contributions of this paper are as follows:

 Implementation of the MCPlan with expert knowledge

for micro-management in StarCraft.

 Design and description of a simulator for complex

commercial RTS game combat scenario.

II. APPLICATION TO STARCRAFT

We apply MCPlan to Starcraft by accessing the game

engine through BWAPI1.

Simulator Design

The simulator is a model that is used to simulate the game

for making predictions. In our case, the simulator creates

possible game scenarios in the near future.

Our simulator includes three major modules:

A) Character modeling - Characters should be exactly

the same as in the real game, including character’s

hit-points, attack range, special skills etc.

B) Map modeling - Map modeling should consider

different terrains, characters’ location, and unit

overlapping issues.

C) Opponent behavior modeling - We adopt an

 -greedy algorithm to define opponent movement

in simulator. The evaluation function and plans for

opponent are basically the same as MCPlan AI.

1For BWAPI please visit http://code.google.com/p/bwapi

The 1st IEEE Global Conference on Consumer Electronics 2012

978-1-4673-1501-2/12/$31.00 ©2012 IEEE 268

Simulation roll-out

Each roll-out contains two plans: one is fixed and the

other one is stochastic. The fixed one is a specific plan

chosen for evaluation, so it is always simulated first.

After that, the program will randomly pick another plan

and continue the simulation process. After simulating

both plans, this roll-out is evaluated.

Search Algorithm

Here is our algorithm, UCB1, for searching the best plan.

i
i N

N
CRiUCB

ln
)(1  (1)

In the formula, i is the index of each plan. presents

the reward that plan obtains from the evaluation

function. C is a predefined constant, and
are the total procedure number of roll-outs and the

number of times that plan i has been visited as the

fixed plan respectively.

The basic view of our MC simulation is as follows:

1) Load plans one by one to the simulator.

2) Simulate each roll-out once, evaluate it and reward

its fixed plan.

3) Choose the best plan that evaluation by UCB1,

simulate the roll-out and reward the plan again.

4) Repeat step 3.

5) Choose the plan with best average result for the AI

player in a real game.

Evaluation function

An evaluation function is for measuring the effectiveness
of a roll-out plan in different situations. Our evaluation
function is for individual units and contains 4 aspects:

EGSPDMHPQ 4321   (2)

Four elements in this function are individual unit's
hit-point, damage to opponent, move speed and
remaining energy, respectively. We manually set their
weights based on expert bias.

III. EXPERIMENTS AND RESULTS

We designed two experiments to test our MCPlan AI,

both are combat scenarios of Terran against Zerg. In order

to ensure all units get involved in the combat quickly,

combats are limited to 1616 (game size) space. The

difficulty of two experiments is basically the same, but

the environment in experiment 2 is more complex and

requires different skills.

For highlighting the effectiveness of micro-control, Zerg

force units always have military advantages and are

controlled by the original AI. We then applied different

subjects (original AI, MCPlan AI and human expert) to

control Terran force and compare their performance. The

results are as follows (Table I):

Experiment 1 Experiment 2

8 Marines vs 12 Zerglings 8 Marines vs 10 Zerglings

and 1 Lurker

OAI 0% 0%

MCAI 33.3% 60%

Expert 80% 93%

Table I. Results of two experiments

The table above shows the win rate of all subjects, each

experiment runs 15 times for each subject. We can see

Monte-Carlo AI performs much better than Original AI in

both experiments, but still incomparable to human expert.

IV. CONCLUSION AND FUTURE WORK

This paper presented a preliminary work for solving the

problem of unit-control in RTS games. We described a

mechanism for applying MCPlan to Starcraft. We

successfully developed a simulator for the game and

tested our method. Our work includes the design of plans,

simulator, and evaluation function as well as their

implementation. From the experiments, we obtained

initial results which indicated a promising potential of

MCPlan in this domain. For future work, we intend to

improve the simulator speed and find a way to

automatically decide the weights in evaluation function.

REFERENCES

[1] B. Weber, M. Mateas and A. Jhala, “BuildingHuman-Level AI for

Real-Time Strategy Games”, AAAI Fall Symposium on Advances

in Cognitive Systems (ACS 2011), pp. 329-336.

[2] G. Synnaeve, and P. Bessiere, “A Bayesian model for RTS units

control applied to StarCraft”, in IEEE Conference on

Computational Intelligence and Games(CIG), 2011, pp. 190-196.

[3] M. Chung, M. Buro, and J. Schaeffer, “Monte carlo planning in

RTS games,” in IEEE Symposium on Computational Intelligence

and Games (CIG), 2005.

[4] S.R.K Branavan, David Silver, Regina Barzilay, “Non-Linear

Monte-Carlo Search in Civilization II”,in Proceedings of IJCAI,

2011, pp. 2404-2410.

iR

iN



N

i

269

