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ABSTRACT 

This paper presents an application of Monte-Carlo 

planning (MCPlan) to controlling units in a RTS game 

StarCraft. We apply an greedy  algorithm to model 

the opponent in a simulation for improving MCPlan’s 

performance. Experimental results are provided at the end 

of this paper, which show the potential of MCPlan in this 

domain. 

  

I. INTRODUCTION 

StarCraft is one of the most popular RTS game developed 

by Blizzard Entertainment. The extremely balanced 

gameplay and easy access to the game engine not only 

provides players with multiple options, but also enables it 

to be an ideal platform to test various AI approaches. 

However, because of its real-time property and largely 

unpredictable randomness, it is a challenging game for AI 

research.  

In this paper we focus on the micro management of 

StarCraft gameplay. Micro-management is a series of 

actions that issue commands to each unit of a certain 

group for maximizing their effectiveness during combat. 

It is a significant part in RTS game because it can bring 

players great advantages in the game. 

 

Monte Carlo Planning 

MCPlan is a mechanism based on simulation and does a 

stochastic sample of possible choices. It is an effective 

method to handle random and imperfect information 

issues with alternating moves by determining the best 

result after multiple roll-outs. A great advantage of 

MCPlan is the reduction of expert knowledge required, it 

only need an effective evaluation function. 

Previous work has been done on both unit control and the 

MC-simulation application. Unit control is usually 

handled by finite state machines, scripts or neural 

networks, etc. For example, Weber and Michael used 

hand authoring ABL behaviors to handle 

micro-management task in StarCraft [1]. A Bayesian 

model was applied to StarCraft for unit control by Gabriel 

and Pierre [2]. But they all need lots of expert knowledge. 

Monte-Carlo method in RTS games can also be found 

from previous work. Such example include works 

applying MCPlan to high-level planning [3], or 

combining Monte-Carlo method with non-linear value 

function approximation (VFA) and text recognition 

technique as a solution for large sequential decision 

making problems [4]. However, these works mainly focus 

on high-level planning, and MC simulation can rarely be 

found in low-level AI modules such as micro 

management.  

The contributions of this paper are as follows: 

 Implementation of the MCPlan with expert knowledge 

for micro-management in StarCraft. 

 Design and description of a simulator for complex 

commercial RTS game combat scenario. 

 

II.  APPLICATION TO STARCRAFT 

We apply MCPlan to Starcraft by accessing the game 

engine through BWAPI1. 

 

Simulator Design 

The simulator is a model that is used to simulate the game 

for making predictions. In our case, the simulator creates 

possible game scenarios in the near future. 

Our simulator includes three major modules: 

A) Character modeling - Characters should be exactly 

the same as in the real game, including character’s 

hit-points, attack range, special skills etc. 

B) Map modeling - Map modeling should consider 

different terrains, characters’ location, and unit 

overlapping issues.  

C) Opponent behavior modeling - We adopt an 

 -greedy algorithm to define opponent movement 

in simulator. The evaluation function and plans for 

opponent are basically the same as MCPlan AI.  

 

_______________________________ 
1For BWAPI please visit http://code.google.com/p/bwapi 
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Simulation roll-out 

Each roll-out contains two plans: one is fixed and the 

other one is stochastic. The fixed one is a specific plan 

chosen for evaluation, so it is always simulated first. 

After that, the program will randomly pick another plan 

and continue the simulation process. After simulating 

both plans, this roll-out is evaluated.  

 

Search Algorithm 

Here is our algorithm, UCB1, for searching the best plan.  
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In the formula, i is the index of each plan. presents 

the reward that plan obtains from the evaluation 

function. C  is a predefined constant, and          
are the total procedure number of roll-outs and the 

number of times that plan i  has been visited as the 

fixed plan respectively. 

The basic view of our MC simulation is as follows: 

1) Load plans one by one to the simulator. 

2) Simulate each roll-out once, evaluate it and reward 

its fixed plan. 

3) Choose the best plan that evaluation by UCB1, 

simulate the roll-out and reward the plan again. 

4) Repeat step 3. 

5) Choose the plan with best average result for the AI 

player in a real game. 

 

Evaluation function 

An evaluation function is for measuring the effectiveness 
of a roll-out plan in different situations. Our evaluation 
function is for individual units and contains 4 aspects:  
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Four elements in this function are individual unit's 
hit-point, damage to opponent, move speed and 
remaining energy, respectively. We manually set their 
weights based on expert bias. 
 

III.  EXPERIMENTS AND RESULTS 

We designed two experiments to test our MCPlan AI, 

both are combat scenarios of Terran against Zerg. In order 

to ensure all units get involved in the combat quickly, 

combats are limited to 1616 (game size) space. The 

difficulty of two experiments is basically the same, but 

the environment in experiment 2 is more complex and 

requires different skills. 

For highlighting the effectiveness of micro-control, Zerg 

force units always have military advantages and are 

controlled by the original AI. We then applied different 

subjects (original AI, MCPlan AI and human expert) to 

control Terran force and compare their performance. The 

results are as follows (Table I ): 

Experiment 1 Experiment 2 

8 Marines vs 12 Zerglings 8 Marines vs 10 Zerglings 

and 1 Lurker 

OAI    0% 0% 

MCAI  33.3% 60% 

Expert 80% 93% 

Table I. Results of two experiments 

The table above shows the win rate of all subjects, each 

experiment runs 15 times for each subject. We can see 

Monte-Carlo AI performs much better than Original AI in 

both experiments, but still incomparable to human expert. 

 

IV.  CONCLUSION AND FUTURE WORK 

This paper presented a preliminary work for solving the 

problem of unit-control in RTS games. We described a 

mechanism for applying MCPlan to Starcraft. We 

successfully developed a simulator for the game and 

tested our method. Our work includes the design of plans, 

simulator, and evaluation function as well as their 

implementation. From the experiments, we obtained 

initial results which indicated a promising potential of 

MCPlan in this domain. For future work, we intend to 

improve the simulator speed and find a way to 

automatically decide the weights in evaluation function.  
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