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Abstract—This paper presents our work to enhance a state-of-
the-art level generator (Sketch-to-Level Generator) that generates
levels for an Angry-Birds-like game from drawn sketches. To
achieve this task, Cycle-Consistent Adversarial Networks (Cycle-
GAN) are used. CycleGAN is trained using two datasets: sketch
drawings and typical level-structures. The former are taken from
Google’s Quick, Draw! datasets, and the latter from the winning
level generator at the 2017 and 2018 AIBIRDS level generation
competitions. The output of the trained CycleGAN is used as
the input of Sketch-to-Level Generator. Our results show that
the proposed preprocessing technique using CycleGAN allows
Sketch-to-Level Generator to more successfully generate levels
from arbitrary sketch drawings.

Index Terms—Angry birds, CycleGAN, sketch drawing

I. INTRODUCTION

Many games nowadays have many interesting designs of
their levels or stages, and many level-generation techniques
have been implemented to make games more interesting. Here,
we focus on a state-of-the-art example of such techniques
that to generate a level from a drawn sketch (Stephenson
et al [1]). In particular, their generator, henceforth called
Sketch-to-Level Generator, transforms a human drawing to
a level in a game called Science Birds, a clone version of
Angry Birds widely employed for academic research [2].
Game levels generated from their generator will be similar
to input drawings. Although Sketch-to-Level Generator can in
most cases generate levels from input drawings that contain
rectangle-shape objects, it struggles to generate a stable level
when an input sketch contains objects with curve lines.

To solve the aforementioned issue in Sketch-to-Level Gen-
erator, this study proposes to first preprocess a given sketch
using Cycle-Consistent Adversarial Networks (CycleGAN),
developed by Zhu et al. [3]. CycleGAN is a powerful technique
that learns a transformation between two image distributions.
In particular, we expect CycleGAN to transfer a block-shape
style, usually seen in Angry Birds levels, to the content of
a given sketch, from which Sketch-to-Level Generator can
readily generate a level.

II. METHODOLOGY

A. Quick, Draw!

Quick, Draw! (2016) [4] is an online drawing game by
Google. This game uses neural networks to learn the player’s
doodling. In this game, the player is asked to draw a certain
object, and the resulting drawing will be guessed by the
neural networks. Currently, Google provides datasets of this
game, containing 345 categories of drawings. Our study used
parts of the Quick, Draw! datasets for training CycleGAN, in
particular, those selected by extracting the first ten images in
each category.

B. Level Generator

IratusAves is a level generator for Science Birds developed
by Stephenson and Renz [5]. It was the winning entry at the the
2017 and 2018 AIBIRDS level generation competitions. This
generator is capable of generating stable and solvable Science
Birds levels with a high variety. In our study, to prepare a
dataset containing typical Science Birds structures, IratusAves
was used to generate 3500 Science Birds levels that contain
no pig and TNT (explosive) objects, subject to a constraint
that only rectangular block types are used.

C. CycleGAN

CycleGAN is a variant of Generative Adversarial Network
(GAN). It is an artificial neural network that can perform
image-to-image translation without pairing information, which
facilitates the preparation of training data. Its developers
publicly provide CycleGAN on both Pytorch and Torch im-
plementations. This study applies the Pythorch version to train
a model using Quick, Draw!’s sketch images and IratusAves’s
block-structure images as training data. During the training,
given an image from the former dataset, the generator in
CycleGAN is aimed at generating an image similar to a
Science-Birds-like structure, and the discriminator attempts to
gain the ability to detect that it is a faked one and label any
of those in the latter dataset a real one.



D. Sketch-to-Level Generator

Sketch-to-Level Generator provides rectangular and non-
rectangular modes for a given image input to generate a
stable level. Their algorithm detects corners of the input
sketch and identifies horizontal and vertical edges between
detected corners. The identified edges will be reformed to a
rectangle. Our study used the generator with the rectangular
mode to validate results when CycleGAN is used and the non-
rectangular mode otherwise.

III. EXPERIMENT

Our target sketch images are in black and white colors. As
a result, we modified Science Birds blocks’ colors to only
black and white colors. In addition, we set Sketch-to-Level
Generator to use only block types.

Due to the use of black and white images, we re-configured
the input and output of CycleGAN to only one channel, rather
than three channels for color images. We also examined the
effects of applying a thresholding filter to the output of trained
CycleGAN, where the pixels whose value is less than 220 will
be black and the rest will be white; we empirically tried other
values of the threshold, but the value of 220 gave us the most
promising results.

IV. RESULTS

All levels were generated by Sketch-to-Level Generator.
We evaluate our enhancement techniques by comparing lev-
els between those generated by (1) a baseline, which is
Sketch-to-Level Generator without CycleGAN, (2) Sketch-
to-Level Generator with CycleGAN but without the use of
the thresholding filter, and (3) Sketch-to-Level Generator with
CycleGAN and the filter (CycleGAN+Filter). Our findings are
in the following.

Figure 1 shows an example sketch image which is the input
to either baseline or CycleGAN, the output from CycleGAN
which is also the input to the filter, and the output from
CycleGAN+Filter. Figure 2 shows a resulting level from each
of the three methods. It can be obviously seen that structures
from method 3 look more aesthetic and closer to the original
sketch than those from method 2. In this example, a level
cannot be generated by Sketch-to-Level Generator alone.

Table I compares the three methods in terms of the number
of times Sketch-to-Level Generator can successfully generate
levels with no error, the average number of blocks in a level,
and the ratio of stable levels (those having no collapsing
structures before a bird shot) over successfully generated ones.
In total, 3450 sketch images were used. The two methods using
CycleGAN, methods 2 and 3, could successfully generate
levels much more than method 1. In addition, their levels have
more blocks than levels generated by method 1. In terms of the
total number of stable levels generated (Level × Stability),
method 3 has the highest number of stable levels.

Fig. 1: (a) an example sketch image, (b) CycleGAN’s output,
(c) CycleGAN+Filter’s output

Fig. 2: Science Birds structures generated from CycleGAN’s
output – (a) without the filter (cf. Fig. 1.b), (b) with the filter
(cf. Fig. 1.c)

TABLE I: Comparisons between the three methods

method 1 method 2 method 3
Levels 188 1762 2168
Blocks 4.54 ± 2.92 11.9 ± 10.78 10.15 ± 8.59

Stability 1.00 0.91 0.93

V. CONCLUSIONS AND FUTURE WORK

From the results, the proposed system1 with CycleGAN,
regardless of the use of a thresholding filter, enhances Sketch-
to-Level Generator. Nevertheless, resulting levels have certain
possibilities to become unstable, thus unplayable. We leave
this issue as our future work.
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