
Learning from Human Decision-Making

Behaviors -
An Application to RoboCup Software Agents

Ruck Thawonmas1, Junichiro Hirayama2, and Fumiaki Takeda2

1 Department of Computer Science, Ritsumeikan University
1-1-1 Noji Higashi Kusatsu City, Shiga 525-8577, Japan

2 Course of Information Systems Engineering, Kochi University of Technology
185 Miyanokuchi, Tosayamada-cho, Kami-gun, Kochi 782-8502, Japan

takeda.fumiaki@kochi-tech.ac.jp

Abstract. Programming of software agents is a difficult task. As a re-
sult, online learning techniques have been used in order to make software
agents automatically learn to decide proper condition-action rules from
their experiences. However, for complicated problems this approach re-
quires a large amount of time and might not guarantee the optimality
of rules. In this paper, we discuss our study to apply decision-making
behaviors of humans to software agents, when both of them are present
in the same environment. We aim at implementation of human instincts
or sophisticated actions that can not be easily achieved by conventional
multiagent learning techniques. We use RoboCup simulation as an ex-
perimenting environment and validate the effectiveness of our approach
under this environment.

1 Introduction

It’s a not-so-easy task to build software agents or multiagents (henceforth sim-
ply called agents) so that they could perform desired actions. To define proper
condition-action rules, one may choose to hand code them using if-then rules or
to use online learning techniques such as reinforcement learning [1]. Hand cod-
ing requires a set of rules that must cope with various kinds of conditions. This
approach requires special skills and much effort to write complete agent pro-
grams. In addition, when conditions and desired actions are complicated, rules
will also become intricate and the number of rules large. On the other hand,
reinforcement learning can relatively easily make agents learn from their experi-
ences a moderate number of condition-action rules. Compared to hand coding,
this approach imposes the lesser burden on the user. However, in this approach
it might be difficult to learn complex rules or take long learning time to reach
them. Rather, this approach is useful for adding refinement to other methods.

The main objective of our study is to solve the aforementioned problems. In
our approach, we derive condition-action rules from decision-making behaviors of
humans. Namely, logs are taken that consist of conditions and the corresponding

Administrator
Proc. The Fifteenth International Conference on Industrial & Engineering Application of Artificial Intelligence & Expert Systems (IEA/AIE 2002), Cairns, Australia, Jun. 2002, published in Lecture Notes in Computer Science, T. Hendtlass and M. Ali, Eds., vol. 2358, pp. 136-145. 



actions while the latter are decided by a human who is present in the same
environment as the agent. Condition-action rules extracted from these logs using
C4.5 [2] are then applied to the agent. Thereby, the agent can be promptly
trained to have human decision-making behaviors. Moreover, this approach has
high potential to allow implementation of complex condition-action rules such as
cooperative behaviors among agents or human instincts that can not be readily
achieved by conventional agent learning techniques.

In this paper, we use RoboCup soccer simulation [3] as our agent platform. A
system called OZ-RP [4] was recently proposed and developed by Nishino, et al.,
that enables human players to participate soccer games with agents. However,
this system highly depends on the model for describing the environment and
internal state of their agents. It thus is not compatible with our agents previously
developed for both education [5] and competitions1. As a result, for our agents
we originally develop a system called KUT-RP that has similar functions to the
OZ-RP. Logs from the KUT-RP system are used for extracting human decision-
making behaviors.

2 RoboCup Simulation

RoboCup2is an international initiative to foster artificial intelligence and intelli-
gent robotics by providing a standard test bed (soccer) where several technologies
can be integrated and examined. The grand challenge of the RoboCup initia-
tive is to develop a team of fully autonomous humanoid robots that can win
against the human world soccer champions by the year 2050. Research outcomes
are to be applied to a wide range of fields such as rescuing robots, intelligent
transportation systems, and other social infrastructures. At present, RoboCup
consists of five leagues, namely, simulation, small size, middle size, Sony 4 legged,
and humanoid leagues.

Fig. 1 shows the architecture of the simulation league system adopted in
this study. They are three main components in the system, i.e., soccer clients
(agents), the soccer server, and the soccer monitor. The soccer server and clients
communicate with each others during a game based on a client/server model un-
der the UDP/IP protocol. All soccer objects such as the soccer ball, the players,
or the field are visualized on the soccer monitor.

In simulation, to maximally mimic real-world soccer games, a number of
constraints have been introduced and applied to the system. For example, noises
are intentionally imposed to sensory information (aural sensor, vision sensor,
and body sensor) to be sent from the soccer server to each agent. On the other
hand, three basic commands (kick, dash, and turn) to be sent from each agent
to the soccer server always contain a certain degree of inaccuracy. The vision
scope and stamina of each agent is also limited.

1 Our soccer simulation teams NoHoHoN and NoHoHoN G2 participated in the Japan
Open 2000 and 2001, respectively.

2 The official web site is www.robocup.org.



Agent

Agent

Agent

Field Simulator

Message Board

Referee

Soccer Server Soccer Monitor

Soccer Clients

UDP/IP

socket

socket

socket

Fig. 1. Architecture of the simulation league system.

3 Architecture of KUT-RP

In this section, we describe the architecture of our originally developed KUT-
RP (Kochi University of Technology - Ritsumeikan University’s Player) system
using Java. The KUT-RP system is developed based on our original agents. The
objective of the KUT-RP system is to enable human players to participate soccer
games by operating agents called KUT-RP agents. Fig. 2 shows the conceptual
diagram of the KUT-RP system.

The KUT-RP system is composed mainly of three components, i.e., the agent
core, the real-player monitor, and the standard input devices. The agent core
has the following modules, namely,

communication module that copes with communication between the soccer
server and the KUT-RP agent,

memory module that processes and stores the information sent from the soc-
cer server as well as the real-player monitor, and

composite command execution module that performs composite commands
composed of series of at least one of the three basic commands.

In practice, it is not feasible for a human player to keep on issuing the three
basic commands. To cope with this problem, three composite commands are
developed. Each of them is described as follows:

kick to specified position that makes the KUT-RP agent kick the ball to-
ward the specified position,

dash to specified position that makes the KUT-RP agent dash to the spec-
ified position, and

dribble to specified position that makes the KUT-RP agent dribble the ball
to the specified position.



Server

C
o
m
p
o
s
i
t
e

C
o
m
m
a
n
d

E
x
e
c
u
t
i
o
n

M
e
m
o
r
y

C
o
m
m
u
n
i
c
a
t
i
o
n

Real-Player
Monitor

Input
Commands

Mouse

Agent Core

Sensor Information

Sensor

Information

Action Commands

A
c
t
i
o
n

C
o
m
m
a
n
d
s

Processed
Information

Accepted

Commands

Processed

 Information

Fig. 2. Conceptual diagram of the proposed KUT-RP system.

In addition to these composite commands, the KUT-RP agent can be executed
in one of the following three operation modes, namely,

full-auto mode that will play automatically and not take into account any
composite commands issued by the human player,

semi-auto mode that will automatically trace the ball if any of the composite
commands is not issued, and

manual mode that will wait until one of the composite commands is issued.

The real-player monitor is different from the RoboCup soccer monitor where
all available information and objects are visualized. In the real-player monitor,
only the visual information available to the KUT-RP agent is displayed. The
displayed information includes both the information sent from the soccer server
and the information processed and enriched by the memory module. One exam-
ple of the latter type of information is the predicted ball position when the ball
can not be actually seen by the KUT-RP agent due to restricted vision scope.
Fig. 3 shows a display of the real-player monitor before the ball is kicked off. In
this figure, a KUT-RP agent is shown on the left side of the center circle, the ball
in the middle. Two opponent players are shown in the right side of the soccer
field. Our current version of the real-player monitor is also equipped with a bar
showing the remaining stamina of the KUT-RP agent, a display box showing
the most recently clicked button of the mouse (to be described soon below), and
another display box showing the agent dashing speed.



Fig. 3. Display of the real-player monitor.

In this study, a mouse is used as the input device of the KUT-RP system3.
The left, middle, and right buttons correspond respectively to dash to specified
position, kick to specified position, and dribble to specified position
composite commands. The specified position of these commands is defined by
pointing the mouse cursor to the desired position in the real-player monitor while
clicking one of the mouse buttons.

In addition to the components and modules described above, the KUT-RP
system is also equipped with a function to record logs of the agent’s commands
and the sensor information when these commands are issued by the human
player.

4 Experiments of Learning from Human Decision-Making
Behaviors

We extensively conducted experiments in order to verify whether it is possible to
learn the decision-making behaviors of the human player who operates a KUT-
RP agent. In these experiments, a KUT-RP agent under the semi-auto mode
played against two opponents (one defender and one goalkeeper), as shown in
Fig. 3. Logs were then taken from each simulation game taking in total of 6000
simulation cycles (10 minutes in the default mode). Condition-action rules were
extracted by C4.5 from the logs recorded with the KUT-RP system explained
3 We are now developing a new user interface that can incorporate inputs from the

keyboard



Steps 1,2

Step 3

Fig. 4. Basic strategy from step 1 to 3.

above. The generated decision tree was then applied to an agent henceforth
called the virtual human agent. The virtual human agent was designed by two
very simple if-then rules:

If the virtual human agent holds the ball,

then consult the decision tree whether to kick or shoot,

and

If the virtual human agent does not hold the ball, then trace the ball.

We examined the scores obtained by the virtual human agent when it was applied
with different decision trees generated by accumulated logs of different numbers
of training games.

The opponent defender agent was programmed in such a way that it moves
at the highest speed to and forwardly kick the ball at the highest power when
the distance to the ball is relatively near (below 7 meters). Otherwise, it moves
back to and waits at its initial position located in front of the goalkeeper but
with some distance. This situation makes it difficult for an offending agent like
our KUT-RP agent to dribble or to shoot the ball directly through this defender
agent toward the center of the opponent goal. A very simple but effective strategy
that the human player eventually adopted for playing the KUT-RP agent can
be described below as follows:

1. kick the ball to either side (top or bottom),
2. trace the ball,
3. shoot the ball while keeping it away from the goalkeeper,
4. if the ball is blocked and kicked back by the goalkeeper, then trace the ball

and repeat from step 1.



Step 4

Steps 1,2
Step 3

Fig. 5. Action sequences when the ball is blocked and kicked back by the goalkeeper.

Attribute Name Attribute Type

x continuous
y continuous

body angle continuous
ball direction continuous
ball distance continuous

opponent direction continuous
opponent distance continuous

Table 1. Attribute names and types of the input data.

Figs. 4 and 5 visually show this strategy.
In order to generate decision trees, we have to define classes and input at-

tributes as well as their types. In this study, they are summarized in Tables 1
and 2. The input attributes in Table 1 are selected from the information sent to
the agent by the soccer server. The attributes x and y altogether represent the
absolute coordinate of the agent in the soccer field. The attribute body angle
indicates the relative direction of the body of the agent toward the center of the
opponent goal. The attributes ball direction, ball distance, opponent direction,
and opponent distance are the relative direction and distance to the ball and
to the nearest opponent, respectively. The classes in Table 2 represent agent ac-
tions. The class kick is divided into 19 subclasses according to different kicking
directions relative to the agent’s body direction. The class shoot is not explic-

Class Name Subclass Name

kick -90,-80,-70,-60,-50,-40,-30,-20,-10,0
,10,20,30,40,50,60,70,80,90

shoot Top,Bot,Mid
Table 2. List of classes and their subclasses.



itly provided by the KUT-RP system, but can be derived from the kick to
specified position composite command by checking whether the position in-
side the opponent goal area is specified or not.

For comparisons, we conducted an experiment in which a programmer who
has good understanding of Java but is relatively new to RoboCup simulation
domain was asked to hand code an agent for playing against the two opponents
described above. In addition, we also conducted an experiment using an agent
trained with reinforcement learning for the same competition. For reinforcement
learning, we used the Q learning with 3 states, each having 4 possible actions,
namely,

state 1: far from opponent goal in which the distance between the agent
and the opponent goal is between 20 and 40 meters,

state 2: near to opponent goal in which the distance between the agent and
the opponent goal is below 20 meters,

state 3: near to opponent player in which the distance between the agent
and the nearest opponent player is below 7 meters,

action 1: shoot to the near-side goal post by which the ball is shot to the
near-side goal post,

action 2: shoot to the far-side goal post by which the ball is shot to the
far-side goal post,

action 3: dribble to the near-side goal post by which the ball is dribbled
to the near-side goal post,

action 4: dribble to the far-side goal post by which the ball is dribbled to
the far-side goal post.

In addition, when the reinforcement learning agent is not in one of the three
states above, it will trace the ball and dribble the ball toward the center of the
opponent goal.

5 Experimental Results

Fig. 6 shows the scores obtained by the KUT-RP agent for five games. At the
first game, the human player was still not familiar with the system. As a result,
the obtained scores were relatively low. More stable scoring could be seen from
the second game.

Fig. 7 summarizes the averaged and highest scores from five games obtained
by the hand-coded agent, the KUT-RP agent, the reinforcement learning agent
and the virtual human agent, when the last two were trained by various numbers
of games from one to five. The number of games used for training the virtual
human agent indicates the number of games that the human player plays the
KUT-RP agent; more games means more logs or training samples for extracting
condition-action rules.

From the results in Fig. 7, it can been seen that the performance of the
virtual human agent improves as the number of training games increases. When
five games were used for training, its performance become comparable to that



Fig. 6. Scores obtained by the KUT-RP agent.

of the KUT-RP agent. Visual comparisons of the movements of both agents also
confirmed that they had similar behaviors.

In addition, the performance of the virtual human agent is superior to that
of the reinforcement learning agent for all numbers of training games. Though
one can argue that the design of states and actions of the reinforcement learning
agent were not optimal, optimizing such designs is not an easy task and might
even take longer training time (more training games) due to higher degree of
complexity.

Compared with the hand-coded agent, the virtual human agent has subtly
lower performance. It turned out that the programmer adopted a similar strat-
egy to the one used for the KUT-RP agent, but the hand-coded agent had more
precise shooting ability. However, it took at least five hours of coding time in-
cluding the time for laying out the strategy. To train the virtual human agent,
it took approximately one hour for taking the logs of five games and extracting
the rules, noting that 10 minutes are required for playing one game.

6 Conclusions

Applying human decision-making behaviors to software agents is an effective ap-
proach for implementing complicated condition-action rules. The experimental
results given in this paper confirm this conclusion. In addition, because humans
tend to incorporate prediction using their instincts into decision-making process,
it can be expected that agents with such ability can be readily built using the
presented approach. Validation of this conjecture, optimization of the rule ex-



Fig. 7. Comparisons of the highest and averaged scores obtained by various kinds of
agents used in the experiments.

traction methodology, and applications of the approach to industrial uses are
left as our future studies.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning (Adaptive Computation and
Machine Learning). MIT Press (1998)

2. Quinlan, J.R.: C4.5 Programs for Machine Learning. San Mateo, Morgan Kauf-
mann (1993)

3. Kitano, H., Kuniyoshi, Y., Noda Y., Asada M., Matsubara H., Osawa, E.:
RoboCup: A Challenge Problem for AI. AI Magazine, Vol. 18, No. 1 (1997), 73-85

4. Nishino, J, et al.: Team OZ-RP: OZ by Real Players for RoboCup 2001, a system
to beat replicants. (2001) (submitted for publication)

5. Thawonmas, R.: Problem Based Learning Education using RoboCup: a Case Study
of the Effectiveness of Creative Sheets. International Symposium on IT and Edu-
cation (InSITE 2002), Kochi，Jan. (2002)




