
Online Adjustment of the AI’s Strength in a Fighting
Game Using the k-Nearest Neighbor Algorithm and a

Game Simulator

Yuto Nakagawa
Intelligent Computer Entertainment

Laboratory, HCI Dept., ISE
Ritsumeikan University

Shiga, Japan
is0127kh@ed.ritsumei.ac.jp

Kaito Yamamoto
Intelligent Computer Entertainment

Laboratory, GSISE
Ritsumeikan University

Shiga, Japan
is0093fh@ed.ritsumei.ac.jp

Ruck Thawonmas
Intelligent Computer Entertainment

Laboratory, HCI Dept., ISE
Ritsumeikan University

Shiga, Japan
ruck@ci.ritsumei.ac.jp

Abstract— This paper proposes a method for online adjustment
of the AI’s strength in a fighting game. The adjustment aim is
that of maintaining the AI’s strength slightly above its opponent's
level. The proposed method adopts the k-nearest neighbor
algorithm for predicting the opponent's next action and uses this
information together with a game simulator for determining the
next action of the AI, leading to slightly winning scores against
the opponent. The proposed method is evaluated on a fighting-
game used at the fighting game AI competition organized by the
authors since 2013. Evaluation results confirm the effectiveness
of the proposed method.

Keywords— fighting games, AI's strength, online adjustment,
k-nearest neighbor

I. INTRODUCTION

In most fighting games, the opponent’s strength influences
a lot the games’ interestingness and difficulty [1]. It can thus be
stated that the player will have more fun playing against an
opponent that matches well with the player’s skill level or
experience level. However, different players have different
such levels.

Most fighting games have been mainly designed for human
versus human matches, but also allow their players to play
against a non-player character or AI. Such AIs, however, are
designed to have different pre-defined strength and thus do not
adapt their strength to the encountering human player. A
number of approaches have been proposed that attempt to
increase the AI’s strength [2] or mimic the human player [3].
However, those approaches did not aim at adapting the AI’s
strength to fit that of the human player. Such adaptability is
required for making matches against an AI more fun to the
player.

In this paper, we propose a method for online adjustment of
the AI’s strength in a fighting game. The adjustment aim is that
of maintaining the AI’s strength slightly above the player's
level. The proposed method adopts the k-nearest neighbor
algorithm for predicting its opponent's next action and uses this
information together with a game simulator for determining the
next action of the AI, leading to slightly winning scores against
the opponent.

II. GAME RULES

Here we describe the game rules in the competition, the
Fighting Game AI Competition 1 organized by the authors’
laboratory since 2013 for game-AI research purposes, whose
game platform is used in this research. In this competition, a
game consists of three rounds, each having 60 sec. The winner
of a match is the AI whose sum of the scores in each round,
self.score, given below, is the larger.

self.score =
௢௣௣.௥௢௨௡ௗ஽௔௠௔௚௘

௦௘௟௙.௥௢௨௡ௗ஽௔௠௔௚௘ା௢௣௣.௥௢௨௡ௗ஽௔௠௔௚௘
*1000, (1)

where x.roundDamage is the amount of accumulated damages
the AI (x = “self”) or the opponent (x = “opp”) has received
since the beginning of the corresponding round.

III. PROPOSED METHOD

In order to adjust the AI’s strength, the proposed method
uses the AI’s scores, acc.score, accumulated from the
beginning of each game and uses the k-nearest neighbor
algorithm for predicting its opponent’s next action predictAct,
the description of which is given in Section IV. In addition,
once such an action is predicted, it uses a game simulator to
evaluate each of the AI’s actions ܽ௜	(i=1, 2,…, n) selected in
advance for this task, where e[i] is the evaluation value for ܽ௜
and n is the number of such actions. The evaluation value e[i]
is defined by the difference between the opponent’s amount of
damages and the AI’s amount of damages when the AI
conducts ܽ௜ against predictAct. It has a minus value when ܽ௜
led to an inferior outcome and a plus value to a superior
outcome

The AI changes the way to determine its own action based
on the situation it is currently facing. We, therefore, consider
two situations: inferior situation and superior situation. In
addition, we employ a threshold 	߬	 and compare it with
acc.score in order to determine which situation the AI is
currently facing. If acc.score is smaller than ߬ , it is in the
inferior situation and the action with the highest evaluation

1 http://www.ice.ci.ritsumei.ac.jp/~ftgaic/

Proc. of the 3nd IEEE Global Conference on Consumer Electronics
(GCCE 2014), Tokyo, Japan, Oct. 7-10, 2014.

このイメージは、現在表示できません。

このイメージは、現在表示できません。

このイメージは、現在表示できません。

Algorithm 1 ActDecision (se l f , opp , pred ic tAct , game)

e[i] ⇐ 0 for all i = 1, 2,…, n
acc.score ⇐ 1000*(opp.gameDamage/

(self. gameDamage + opp.gameDamage))
e ⇐ simulate(self, opp, predictAct, game)
if acc.score ≧ τ then

 repeat
d ⇐ argmin (|e|)
if e[d] ൒ 0 then
 e[d] ⇐	∞	
end if

 until e[d] ൏ 0
else

d ⇐ argmax (e)
end if
return ad

value will be conducted to make the AI have more strength.
This mechanism is given in detail in Algorithm 1, where game
represents the current game-status data, x.gameDamage is the
amount of accumulated damages the corresponding character.
In addition, simulate(self, opp, predictAct, game) uses the game
simulator that simulates the game for about one-second-game
time from the current time, and it returns the evaluation value
for each of the AI’s actions against predictAct.

IV. K-NEAREST NEIGHBOR ALGORITHM

For the predicting task, first, the opponent’s attack data are
recorded each time the opponent performs an attack action. The
recorded information is the attack type and the relative position
between the opponent and the AI. Next, when the AI needs to
decide its action, it first checks whether the opponent is going
to perform an attack action. When the number of the
opponent’s recorded attack actions within a specific distance
from the current relative position, between the opponent and
the AI, is larger than a pre-defined number, the AI will
consider that the opponent is going to attack. If so, the AI will
refer to the opponent’s recorded attack actions that are k
nearest to the current relative position and will predict the
action that the opponent is going to perform, i.e., predicAct, by
majority voting among those k actions.

V. PERFORMANC EVALUATION

In order to validate the effectiveness of the proposed
method, we compared two types of AI: the one with the
proposed method and the one designed to be a strong AI
with	߬ ൌ 1001. Note that the latter AI is of the same behavior
as a sample AI called MizunoAI available in the
aforementioned competition site. We tested the proposed
method with two values of	߬: 550 and 500. The value of k was
set to 3, as done in MizunoAI. The top three AIs in the 2013
competition, T, SejongAI, and Kaiju were individually used as
the opponent. For each opponent, 100 games were conducted.

From the results shown in Tables 1-3, MizunoAI (߬ ൌ
1001) outperformed all of the opponents while the proposed

TABLE I. AVERAGE SCORES AGAINST T

߬ ROUND 1 ROUND 2 ROUND 3 GAME

1001 554 548 551 551

550 520 513 511 515

500 474 469 474 472

TABLE II. AVERAGE SCORES AGAINST SEJONGAI

߬ ROUND 1 ROUND 2 ROUND 3 GAME

1001 508 538 519 522

550 465 515 534 505

500 456 485 490 477

TABLE III. AVERAGE SCORES AGAINST KAIJU

߬ ROUND 1 ROUND 2 ROUND 3 GAME

1001 557 675 664 632

550 491 572 554 539

500 467 514 511 497

AI with ߬ = 550 scored slightly above each of its opponents
and the proposed AI with ߬ = 500 had scores below the
opponents.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a method for performing online adjustment of
the AI’s strength. The proposed method is based on the k-
nearest neighbor algorithm for predicting the opponent’s next
action and on a game simulator for determining the AI’s next
action that would lead the AI’s scores slightly above those of
the opponent. Our results show that the proposed method is
effective, but care must be taken in choosing the value of ߬. We
plan to investigate in future the role of ߬ in detail.

REFERENCES
[1] Jenova Chen: “Flow in Game,” Communications of the ACM, Vol. 50,

No. 4, pp. 31-34, 2007.

[2] B.H. Cho, S.H. Jung, Y.R. Seong, and H.R. Oh, “Exploiting Intelligence
in Fighting Action Games using Neural Networks,”IEICE Transactions
on Information and Systems, vol. E89-D, no. 3, pp. 1249–1256, 2006.

[3] S, Lueangrueangroj and V. Kotrajaras, “Real-time Imitation based
Learning for Commercial Fighting Games,” Proc. of Computer Games,
Multimedia and Allied Technology 2009, pp. 1–3, 2009.

