Proc. of the IEEE International Games Innovation Conference (IGIC), California, USA, pp.

8-11, Nov. 2-3, 2011.

Applying Monte-Carlo Tree Search to Collaboratively Controlling of
a Ghost Team in Ms Pac-Man

Kien Quang NGUYEN and Ruck THAWONMAS
Intelligent Computer Entertainment Laboratory, Ritsumeikan University

Abstract—We present an application of Monte-Carlo Tree
Search (MCTS) to controlling ghosts in the game of Ms Pac-Man.
We approach the problem by performing MCTS on each ghost’s
tree that represents the game state from the ghost’s perspective.
QOur goal is to create a strong ghost team that is adaptable to a
variety of Ms Pac-Man’s play styles. This ghost team (ICE gUCT)
won the CEC 2011 Ms Pac-Man vs Ghost Team Competition for
the ghost side.

I. INTRODUCTION

Ms Pac-Man is a digital video game whose rules are very
simple, but the game requires quite complex strategies for a
successful game play. Because of that, it becomes a good
testbed for AI research. Although there were a number of
existing work in automatic control of Ms Pac-Man, there
has been very limited work done in controlling of the four
ghosts in the game [1]-[3]. A reason for this is that the
original game does not allow the player to control the ghosts.
Therefore, researchers in ghost controlling adopted a variety
of game simulators. Because such simulators are different,
both functionally and cosmetically, in how they resemble
the original game, it was hard to compare their controllers’
performances.

The main problem in controlling the ghosts is how to make
them behave collaboratively. Although normally moving with
the same speed as Ms Pac-Man, each ghost cannot reverse
its direction and in edible state can only move with half of
its normal speed. Without an effective collaborative control,
it becomes nearly impossible for them to effectively trap Ms
Pac-Man.

In this paper, in order to effectively control the ghosts (in
other words, lower the score gained by Ms Pac-Man as many
as possible), we adopt the the UCT method [3], [4], aka
UCB method applied for Monte Carlo Tree (MCT). In order
to ease performance comparison with other ghost controllers,
we use the same simulator as in the Ms Pac-Man vs. Ghost
Team Competition CEC’11 [5]. The UCT method is one of
the tree-search techniques based on simulation of possible
future moves. The method performs random simulation more
often for certain promising moves whose nodes have higher
average rewards and are less often visited, attempting to keep
the balance between exploitation and exploration in the search.

II. OUTLINE OF THE PROPOSED METHOD
A. C-Road

For every maze of the game, we define a C-road as a cor-
ridor that connects two cross-points. The C-road is important

because when a ghost enters a C-Road it cannot turn back
according to the game rule. Thus, we can only control which
direction a ghost should go at a cross-point.

B. Proposed method

To make a ghost team adaptable to any type of Ms Pac-
Man controllers, we need to pay attention to the following
two issues:

¢ having a rough image of how Ms Pac-Man moves, in

other words, the ability to predict the movement of Ms

Pac-Man, and

o controlling the ghosts to trap or catch Ms Pac-Man

effectively.
To cope with these two issues, we propose a system that
is a combination of MCTS and rules. In this system, three
ghosts — Pinky, Sue, Inky — are controlled by the MCTS
algorithm while Blinky moves according to a very simple
rule that always moves it towards the cross-point that Ms
Pac-Man is heading to by the shortest distance. Although,
in general, the MCTS algorithm uses random simulation
(during simulation, all ghosts and Ms Pac-Man will move
randomly), having a rough knowledge about Ms Pac-Man’s
movement patterns will considerably reduce the search space
and hence reduce the time needed for the MCTS ghosts to
come up with an actually good strategy. As a result, we use
the k-nearest-neighbor (KNN) algorithm for predicting Ms
Pac-Man’s movements as described in Sec. IV-C. Moreover,
Ms Pac-Man is a real-time game, requiring each ghost to
return its next direction within a limited time. By having a
ghost, Blinky in our case, move according to some rules, we
can reduce the work load to the CPU and to some extent can
guide searching on the search space to find an optimal move
much faster.

III. CONTROLLING OF GHOSTS
A. Game Tree - Monte Carlo Tree Search

For each MCTS ghost, we construct a tree (Monte-Carlo
Tree) that represents the game state from the ghost’s perspec-
tive. We consider each cross-point a node in the tree; therefore,
a tree branch represents a C-road. The root node is the cross-
point that a ghost of interest is going to visit next in the maze,
and its child nodes are all adjacent cross-points that the ghost
can reach while coming from the parent node. Because the
ghost cannot turn back to the previous node it just visited,
obviously, a node cannot have the direct parent node as one



of its direct child nodes. In addition, when a global reverse
occurs (all ghosts are forced to reverse their directions by the
game system), we start constructing of a new tree with a new
root node.

The initial MCT of each MCTS ghost only contains the root
node. From this node, we construct its tree as follows:

1) Select a satisfiable road (a road containing nodes se-
lected according to formula (1)) from the root node.

2) Expand the leaf node of the selected road and randomly
select one of its child nodes.

3) Start the Monte-Carlo simulation where each of the
other two MCTS ghosts moves according to the selected
road in its tree while Blinky and Ms Pac-Man move
according to rules described in Secs. III-B1 and III-B2,
respectively.

4) Reward each node on the selected road based on the
result from the Monte-Carlo simulation (III-C).

5) Repeat from step 1 to step 4 as many times as possible.
When the MCTS ghost has actually reached its next
cross-point (the root node in its tree), stop its tree
construction and select its next direction to move as the
one that leads to the child node with the highest amount
of rewards as the first criterion, and with the highest
number of revisits as the second criterion.

During tree construction, the UCT is applied. While going
down the tree of a given MCTS ghost, we choose the next
child node as the one that holds the largest UCB1 value. The
UCBI1 value of node i is denoted as:
X; InT

UCBI1(i) = T +C Tt e
In this formula, C' is a pre-defined constant, 7; and T denote
the number of times node ¢ and its parent node have been
visited and € is a small enough number (¢ ~ 107%). Note
that because the parent node is always visited before its child
nodes, the value of 7' is always greater than zero. Also X;
here denotes the accumulated reward of node :.

(1

B. Simulation

First, we calculate the game state, i.e., the state of all objects
in game, when an MCTS ghost of interest will have arrived
at the root node. Then, we start the simulation from the root
node of the MCTS ghost’s MCT. We move this MCTS ghost
according to its tree. When we arrive at a leaf node, the MCTS
ghost will randomly determine its next direction at a cross-
point until the simulation stops. This simulation is using the
same mechanism as that of the game simulator used in Ms
Pac-Man vs Ghost Team Competition 2011. However, in our
simulation, Ms Pac-Man and the other ghosts move according
to rules described in the next section. And the simulation will
stop if one of the following conditions is met.

¢ Ms Pac-Man is eaten.

o All pellets and power pills are eaten.
o A certain amount of game cycles has passed.

1) Ghosts’ moving rules: In the simulation, all of the
other MCTS ghosts move according to their trees, whose
construction has been stopped, currently in use in the game.
And because we limit the maximum number of times the root
node should be revisited (say, 1000 times), the depth of each
tree is also limited. After having reached leaf nodes, these
MCTS ghosts will determine their next directions randomly.
The MCTS ghost of interest, whose tree is under construction,
also determine it next direction in a similar fashion, first
moving according to its tree and then performing random
movements. Because of this mechanism, each MCTS ghost
has partial knowledge about how their friends will move in
the future to some extent, which helps the MCTS ghosts
collaboratively work with each other. Although Blinky always
moves to the cross-point in front of Ms Pac-Man, in the
simulation, we replace its movement style with a randomly
moving one. This is heuristically done so as to make the other
MCTS ghosts behave more aggressively.

2) Ms Pac-Man’s moving rules: Ms Pac-Man in the simu-
lation moves according to the following rules:

e Determine Ms Pac-Man’s next direction at a corner or a
cross-point.

o As an exception rule, immediately reverse Ms Pac-Man’
direction if there is an inedible ghost ahead in the same
C-road within a certain amount of steps (i.e., pixels in
the maze).

e Fix Ms Pac-Man’ direction if there is a power pill ahead
within a certain amount of steps.

At first, we use the Ms Pac-Man’s movement predictor in
Sec. IV for determining Ms Pac-Man’s next directions, but
we also move it randomly under a certain probability. After a
while, Ms Pac-Man’s movements will become fully random.
The reason behind our policy is because we cannot completely
trust the predictor. Thus, some random movements compensate
such prediction errors.

C. Reward

All nodes that are visited along an MCTS ghost’s path will
be rewarded according to the result from the simulation. We
use two kinds of criteria to decide the reward. The first one is
the reverse of scores earned by Ms Pac-Man, and the second
one is the reverse of time taken to finish that simulation. We
also take into account penalties to ensure that all ghosts stay
dispersedly with a safe distance from Ms Pac-Man.

IV. Ms PAC-MAN’S MOVEMENT PREDICTION
A. Considered aspects

To predict the movement of Ms Pac-Man, there are some
aspects we need to consider. When a human player controls Ms
Pac-Man, he or she would pay attention to the distance from
Ms Pac-Man to the nearest ghost, the distance to the nearest
power pill and so on. Accordingly, to estimate Ms Pac-Man’s
movement, we focus on the following features:

o The status of the nearest and the second nearest ghosts.



o The distances from Ms Pac-Man to the nearest ghost and
the second nearest ghost

o The distance to the nearest power pill

« The distance to the nearest pellet

o The distance to the nearest cross-road

o The status of the nearest power pill’s nearest ghost

o The distance from Ms Pac-Man to the nearest power pill’s
nearest ghost

o The distance from Ms Pac-Man’s nearest power pill to
the nearest power pill’s nearest ghost

To some degree, we can see these measurements as a repre-
sentation of the current game state. With these measurements,
to estimate and predict Ms Pac-Man movements, we use the
k-Nearest-Neighbor algorithm for finding the previous game
states that mostly resemble the current game state and from
them try to find the direction which Ms Pac-Man would go
to.

B. Space formation

A set of the above features forms a vector in
multidimensional feature space that we call input space.
Note that the input vector space only expresses the current
state of the game, it cannot express the movement of Ms.
Pac-Man. To express this, we introduce another space — the
move space that shows the meaning of these moves (e.g., a
move to be away from or move to be close to an object).
From this, we perform mapping of a representative game
state in the input space to a move Ms. Pac-Man should do,
given that game state, in the move space. To some extent,
this mapping tells us how Ms Pac-Man would move in near
future (Fig. 1).

C. Ms. Pac-Man’s move prediction process

We predict Ms. Pac-Man next moves or directions according
to the following steps (Fig. 1):

o Collect Ms. Pac-Man’s moving data (a series of input
vectors, each corresponding to a game state).

o From the collected data, choose the k nearest input
vectors to the current input vector p (we set k to 3).

o From these k input vectors, estimate the move vector WAp
in the move space as follows:

where -, is vector 4 in the move space, d(p, ) is the nor-
malized distance between p and its i*” nearest neighbor
in the input space.

« Determine the set of possible moves I',, given the current
input vector, in the move space as follows:

F;D = {’Yp,d’ir|dir € {T’ _>a¢7 F}}

where 7, 4i is the move vector corresponding to vector
p with the attempt to move to direction dir.

mapping of previous states to
their moves’ meanings

Input space Move space

Estimated direction :

mapping of the current
game state to its possible
moves’ meanings

Input space Select the direction nearest
to the estimated move vector
Fig. 1. Prediction of Ms Pac-Man movement by mapping the location of Ms

Pac-Man p in the input space, using its k-nearest neighbors, to the location
vp in the move space and then finding the nearest direction — from up, down,
left, and right — to vp.

Fig. 2. Example of how to use the predicted direction of Ms. Pac-Man
for controlling ghost to make a pincer attack. The arrows show the path Ms.
Pac-Man and ghosts should take according to the predictor and ghost MCTs.

o From the resulting ,, determine the nearest vector in I,
— the most resembles the estimated move’s meaning.

o Consider the direction associated with that vector as the
next Ms. Pac-Man’s direction.

If the data used for predicting Ms Pac-Man’s movements are
too large, this prediction process will take too much time and
do not fit for this kind of real-time application. On the other
hand, if the training data are too small, there is a high chance
that this prediction will be wrong. However, with a suitable
number of training data, we may be able to correctly estimate
Ms Pac-Man’s local movements (Fig. 2), which in turn may
contribute to good guessing of the movement of Ms Pac-Man
whose strategy changes from time to time.

V. RESULTS AND CONCLUSION

Our proposed ghost team ICE gUCT recently won the
competition in the aforementioned competition in CEC
2011 [5]. Table I shows a part of the result of ICE gUCT.
Here, we only reported the scores of the best three ghost
teams versus best three Ms Pac-Man teams [5]. Note that
the stronger a ghost team is, the less score it will lose to
an opponent Ms Pac-Man team. Comparing ICE gUCT with



TABLE I
THE CEC 2011 Ms PAC-MAN VS GHOSTS SCORES.

ICE gUCT | BruteForce | emgallar
James 16436 24158 21805
emgallar 16208 22599 17938
MsAriadne 19282 19031 20076
[ Average [ 173087 [ 219393 [ 19939.7 ]

the rule-based ghost team (277 place: BruteForce) and the
Ant-Colony ghost team (3" place: emgallar), one can readily

N+

that using MCTS with the ability to look ahead and

predict Ms Pac-Man’s movement is an effective way to create
a strong ghost team adaptable to a variety of Ms Pac-Man
play styles. Also, we believe that our approach has great
potential in developing generic Al agents.

[1]

[2]

[3]

[4]

[5]

REFERENCES

P. Rohlfshagen and S. Lucas, "Ms Pac-Man Versus Ghost Team CEC
2011 Competition,” Proc. IEEE Congress on Evolutionary Computation
(2011), pp. 70-77, Jun. 2011.

B.K.B. Tong and C.W. Sung, A Monte-Carlo approach for ghost
avoidance in the Ms. Pac-Man game,” Proc. IEEE GIC, Hong Kong,
pp. 1-8, Dec. 2010.

N. Ikehata and T. Ito, "Monte Carlo Tree Search in Ms Pac-Man,”
in The 15th Game Programming Workshop, IPSJ Symposium Series,
Vol. 2010/12, 2010. (in Japanese)

S. Samothrakis, D. Robles, and S. Lucas. “Fast approximate max-
n Monte-Carlo Tree Search for Ms Pac-Man,” IEEE Transactions on
Computational Intelligence and Al in Games, Vol. 3, No. 2, pp. 142-
154, Jun. 2011.

The Ms. Pac-Man vs. Ghost Team Competition CEC11 Result Page:
www.pacman-vs-ghosts.net/cecl 1results/



