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Online game players are more satisfied with contents
tailored to their preferences. Player classification is
necessary for determining which classes players be-
long to. In this paper, we propose a new player clas-
sification approach using action transition probability
and Kullback Leibler entropy. In experiments with
two online game simulators, Zereal and Simac, our
approach performed better than an existing approach
based on action frequency and comparably to another
existing approach using the Hidden Markov Model
(HMM). Our approach takes into account both the fre-
quency and order of player action. While HMM per-
formance depends on its structure and initial parame-
ters, our approach requires no parameter settings.

Keywords: player classification, online game, data min-
ing, customer relationship management, game design

1. Introduction

The game industry is expanding rapidly due to com-
puter advances and growing social acceptance, especially
online games [1]. Due to high competition in the online-
game industry, it is crucial to provide suitable game con-
tent for individual players or groups to ensure high user
satisfaction. Similar to other e-Commerce business, data
mining plays an important role in understanding player
behavior.

In a new data-mining application called game mining
(Fig. 1) [2], players are classified based on appropriately
selected input features from game logs, and content is pro-
vided to them based on their personal behavior. Another
research group independently proposed a data-mining ap-
plication to online-game task syntheses [3], where such
tasks are dynamically assigned to individual players. In
both, classification is a key technology.

We previously proposed two approaches to player clas-
sification, one using the normalized action frequency vec-
tor (NAFV) [2] and the other using the Hidden Markov
Model (HMM) [4]. The NAFV requires no parameter set-
tings, has low computational costs, and effectively clas-
sifies players when their action frequencies are distinctly

Fig. 1. Game Mining Concept.

different, but is less effective when such differences are
less apparent even though action orders are dissimilar.
The HMM [5] is a powerful tool for classifying sequence
data, but its performance depends on the structure and ini-
tial parameters.

In this paper, we propose a parameterless approach us-
ing action transition probability as the input feature to two
classifiers and Kullback Leibler entropy [6] as the dis-
tance measure. The proposed approach considers action
information in both frequency and order. In experiments,
we compare it to the approaches mentioned above.

2. Player Modeling

We use Bartle’s player categorization [7] as a founda-
tion for modeling players. This categorization uses four
types of player, i.e., Achievers, Explorers, Socializers,
and Killers. Each player type has its own specific charac-
teristics, motivations, and goals summarized as follows:

� Achievers want to have high status in the game
world as soon as possible, and their main concerns
are experience points, health levels, items that they
posses, and high social standing.

� Explorers want to learn interesting things about the
virtual game world such as easy ways to get valuable
points, tricks to escape predators, and shortcuts to
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Fig. 3. Zereal’s four game worlds.

arrive at destinations. They also enjoy demonstrating
their knowledge to other players.

� Socializers are interested in relationships and com-
munications with other players. They like talking
to each other and trading things in the virtual game
world.

� Killers want to kill players and monsters with the
tools provided by the game, gaining satisfaction from
their high fighting skills and the pain they inflict on
others.

Below we describe the simulators, used in our exper-
iments, for generating game logs on players of differ-
ent types. A training data set consists of these logs and
player labels. For simulation data, player types in training
data are player models in the corresponding simulator. In
actual games, information from player questionnaires or
from Game Masters is used to label the type of player in
a given training dataset.

2.1. Zereal Simulator
Zereal [8] is a multiagent simulation system that simu-

lates a massively multiplayer online game.

Zereal consists of a visualization client, a single mas-
ter node, and multiple world nodes (sub-nodes) (Fig. 2).
Each world node controls its own world environment si-
multaneously. The master node gathers individual status
information from world nodes, and forwards it to the vi-
sualization client. The visualization client receives this
information and produces log files in different formats,
including those for analysis and display (Fig. 3).

Figure 4 shows typical game logs. The first, second,
and third columns therein are the simulation-time step,
the current world node, and the actual clock time, respec-
tively. The fourth column shows the agent identifier num-
ber, the fifth agent action, the sixth and seventh coordi-
nates in the game world before and after the action. The
last column is the agent type. Actions and agent types
are extracted from game logs to form action sequences
(Fig. 5), in which each character stands for an action de-
scribed below.

Zereal uses three types of player agents, i.e., a Killer,
Markov Killer, and Plan Agent. These are imple-
mented having different characteristics and intelligence
levels, but nine common actions, i.e., Walk(w), Attack(a),
PickFood(f), PickPotion(p), PickKey(k), Talk(t), Leave-
World(l), EnterWorld(e), and Removed(r). The Markov
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58||1||2003-12-8: 20:6:35||1000321||pickupkey||(137,124)||(137,123)||PlanAgent1

58||1||2003-12-8: 20:6:35||1000338||walk||(131,131)||(132,130)||PlanAgent1

58||1||2003-12-8: 20:6:35||1000339||walk||(38,3)||(39,4)||PlanAgent1
58||1||2003-12-8: 20:6:35||1000341||walk||(57,138)||(58,138)||PlanAgent1

58||1||2003-12-8: 20:6:35||1000347||walk||(32,124)||(33,125)||PlanAgent1

58||1||2003-12-8: 20:6:35||1000349||walk||(84,127)||(84,128)||PlanAgent1

58||1||2003-12-8: 20:6:35||1000351||walk||(53,99)||(54,98)||PlanAgent1

58||1||2003-12-8: 20:6:35||1000354||walk||(17,136)||(18,135)||PlanAgent1
58||1||2003-12-8: 20:6:35||1000355||walk||(84,33)||(83,34)||Killer1

58||1||2003-12-8: 20:6:35||1000356||walk||(76,51)||(76,52)||Killer1

58||1||2003-12-8: 20:6:35||1000357||walk||(69,38)||(70,37)||Killer1

58||1||2003-12-8: 20:6:35||1000358||walk||(47,8)||(48,8)||Killer1

58||1||2003-12-8: 20:6:35||1000359||attack||(135,39)||(135,38)||Killer1

•

•

•

281||1||2003-12-8: 20:11:6||1000147||walk||(121,29)||(122,30)||MarkovKiller1

281||1||2003-12-8: 20:11:6||1000148||walk||(41,23)||(40,22)||MarkovKiller1

281||1||2003-12-8: 20:11:6||1000150||walk||(136,132)||(137,133)||MarkovKiller1

281||1||2003-12-8: 20:11:6||1000151||walk||(36,52)||(35,51)||MarkovKiller1

281||1||2003-12-8: 20:11:6||1000154||walk||(69,33)||(70,32)||MarkovKiller1
281||1||2003-12-8: 20:11:6||1000158||walk||(69,21)||(70,22)||Monster

281||1||2003-12-8: 20:11:6||1000160||walk||(130,88)||(131,87)||Monster

281||1||2003-12-8: 20:11:6||1000170||walk||(54,137)||(53,136)||Monster

281||1||2003-12-8: 20:11:6||1000191||attack||(71,93)||(70,92)||Monster

281||1||2003-12-8: 20:11:6||1000197||attack||(46,120)||(46,121)||Monster
281||1||2003-12-8: 20:11:6||1000204||attack||(16,52)||(15,51)||Monster

Fig. 4. Typical game logs.

• • •

• • •

• • •

MarkovKiller||1000059||wwwtwwwwwwttwwwwwttwwttwwtwwwtwwtwffwttwtwwwwpww

MarkovKiller||1000060||twwwawwwaawaaaawawtttwtwwwwwpwwwwwwwwwwwwwww

MarkovKiller||1000061||aaawwaawfwwkwwwwwwwaawwwwawawfwfwwwwwwwwwwwf

• • •

Killer||1000459|| wwaaaawwwwwwwaaaaaawfawwwwwwwwwwwwwwwffwwwwwaaawww

Killer||1000460|| wwwawkwaaaaaaaaaaaaaaawwwwwwwwwwwwfwwwwwwaaaaaawwww

Killer||1000461||wwaaaaaaaaaaaaaaaawaaaaaaaaawwwwwwwwwwaaaawwwwwawaaaww

• • •

PlanAgent||1000259||wkwwwwwwlewwwwwaawaaaaawwwwwawaaaaaawwwawwwaaaww

PlanAgent||1000260||wwawawwawaawaaaaaaaaawaaaaaawwwaaaaaaawaaaaawkwwwww

PlanAgent||1000261||wwkwwwwkwwwwwfwwwwtawwwwwwwaaaaawaawwwdwwwwwww

• • •

• • •

• • •

Fig. 5. Typical action sequences.

Killer is implemented by a Markov model consisting of
eight states, i.e., fight, talk, hunt, transit, go for power up,
flee, bored, and transported; only certain actions out of
the nine can be performed in a given state.

2.2. Simac Simulator

We developed a simulator called Simac for simulating
player types and actions not available in Zereal. Based
on a simple Markov model for agent modeling, we de-
veloped Simac to generate reliable action sequences with
more agent types and actions using the Python language.
The Simac simulator has nine different states to represent
situations of a player agent in playing, i.e., starting, mov-
ing, fighting, getting, losing, finding, talking, trading, and
dying, plus 51 actions. Each action is assigned to one of
the nine states.

Through the Markov model (Fig. 6), Simac can sim-
ulate many types of players. For reference, the Markov
model of Killer is described in Appendix A. Simac action
sequence formats are the same as those of Zereal.

Moving

Fighting

Getting 

Talking 

Finding 

Starting Dying

Trading  

Losing  

Fig. 6. Simac state diagram.

3. Methodologies

3.1. Action Transition Probability Matrix (ATPM)
The action transition probability matrix (ATPM) de-

rived from action sequences takes into account action or-
ders through action transition probabilities. It also holds
action frequency information through its rows because the
summation of each row is the action frequency of the cor-
responding action. The detailed procedure is shown as
follows:

� Step 1: Initialize m�m action transition frequency
matrix F by setting all elements to 1 where m is the
number of actions. Thereby, only non-zero elements
exist in the calculation of Kullback Leibler entropy
described in the next subsection.

Step 2: From left to right, scan subsequences of
length two sk�sk�1 in each action sequence s �
s1�s2� � � � �sl , where l is the sequence length, and in-
crement the element of matrix F that matches the
transition of the current subsequence as follows:

Fqr � Fqr �1 . . . . . . . . . . . (1)

where q and r are the indices of actions sk and sk�1,
respectively, and k (1� k� l�1) is the current scan-
ning position.

� Step 3 : Calculate the ATPM by dividing each el-
ement of F with the summation of all elements as
follows:

ATPMi j �
Fi j

∑m
i�1 ∑m

j�1 Fi j
� . . . . . . (2)

3.2. Kullback Leibler Entropy (KLE)
Kullback Leibler entropy (KLE) [6] is one of the most

widely used distance measures for comparing similar-
ity between two probability distributions. Because KLE
is asymmetric, we symmetrize it by defining distance
D�Ma�Mb� �D�Mb�Ma� as the average of two entropies
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calculated from ATPMs of interest, Ma and Mb, as fol-
lows:

D�Ma�Mb� �
KLE�Ma�Mb��KLE�Mb�Ma�

2
(3)

KLE�X�Y� �
u

∑
i�1

v

∑
j�1

Xi j log
Xi j

Yi j
. . . . . . (4)

where X and Y have the size of u� v.

4. Experiments

In our experiments, we used two classifiers with the
ATPM and KLE, i.e., adaptive memory-based reasoning
(AMBR) and prototype comparison (Prototype).

AMBR [9] is a variation of memory-based reasoning
(MBR) [10]. MBR conducts majority voting of labels (or
player class in our case) among the k nearest neighbors in
the training dataset to classify a given player; parameter
k must be decided in advance by the user. In contrast,
AMBR is MBR with k initially set to 1; if ties in voting
occur, it increments k accordingly until ties are broken.

In Prototype, the prototype of a particular class is de-
termined by averaging the input features (either vectors or
matrices) of all players of that class in the training dataset.
To classify an unknown player, the player’s input feature
is compared to all prototypes to find the nearest one, and
the player is classified in the class of the nearest prototype.

For comparing performance, we studied five classifiers
in four datasets from [11], summarized as follows:

� The ATPM AMBR is the classifier using the ATPM
as input feature to AMBR, where KLE is used for
computing the distance between matrices.

� The ATPM Prototype is the classifier using the
ATPM as input feature to Prototype, where KLE is
used for computing the distance between matrices.

� The NAFV AMBR is the classifier using the NAFV
as input feature to AMBR, where KLE is used for
computing the distance between vectors.

� The NAFV Prototype is the classifier using the
NAFV as input feature to Prototype, where KLE is
used for computing the distance between vectors.

� The HMM is the classifier using a stochastic model
to represent a prototype. For Zereal data, each pro-
totype is trained by the Baum-Welch algorithm [5],
where the number of states is set to the number of
states in the simulator and initial parameters are set
based on parameters in the simulator, as is done in
[4]. For Simac data, each prototype is ideally con-
structed using the same structure and parameters as
those in the simulator. For both Zereal and Simac
data, the Viterbi algorithm [5] is used for calculating
the similarity between the action sequence of a given
player and each prototype.

The identification rate against trained data is used as the
performance index of each classifier in all experimental
trials, each trial using a different dataset.

4.1. Zereal Data with Three Types of Agent
Ten datasets were obtained from game logs gener-

ated by Zereal with three types of agent. In each
dataset, 16 simultaneous game worlds were simulated for
300 simulation-time cycles with 50 Killers, 100 Markov
Killers, 50 Plan Agents, 50 monsters, and 50 objects for
each item type (food, potion, and key).

Agent types are summarized as follows:

� The Killer puts its highest priority on killing mon-
sters.

� The Markov Killer gets as many items as possible
to become stronger. Player agents of this type also at-
tack monsters based on a predefined state-transition
probability matrix.

� The Plan Agent combines the features of Killer,
Achiever, and Explorer.

Results in Fig. 7 show that the ATPM AMBR has the
best performance, followed by the NAFV AMBR and
HMM.

In this experiment, all player types have specific be-
havior patterns and clearly different action frequencies,
except for Plan Agents that have combined behaviors and
prototypes close to the input features of other-type play-
ers. As a result, both prototype classifiers have low per-
formance. The performance of the HMM is lower than
that of AMBR classifiers because the HMM is also a
prototype-based classifier.

4.2. Zereal Data with Two Types of Agent
In the previous experiment, the NAFV AMBR has rel-

atively good performance because most player types have
clearly different action frequencies. The NAFV does not
have information on action orders, however, and classi-
fiers that use the NAFV as their input features do not
perform well on data with similar action frequencies al-
though they have different action orders. To verify this,
we simulated two types of Markov Killer player, i.e., an
InexperiencedMarkovKiller (IMK) and an Experienced-
MarkovKiller (EMK), by modifying the Markov model
used in Zereal. They have similar action frequencies but
different action orders. In each dataset, 16 simultaneous
game worlds were simulated for 300 simulation-time cy-
cles with 50 IMKs, 50 EMKs, 50 monsters, and 50 ob-
jects for each item type (food, potion, and key). These
two agent types are summarized as follows:

� The IMK attempts all possible actions in a given sit-
uation equally, and all state transition probabilities
in the Markov matrix are the same. This type rep-
resents novice players with little experience, acting
randomly.
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Fig. 7. Performance comparison for Zereal logs with three agent types.
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Fig. 8. Performance comparison for Zereal logs with two agent types.

� The EMK prioritizes some actions over others in a
given situation, and state transition probabilities in
the Markov matrix differ. This type represents vet-
eran players with favored playing styles.

In the performances of the five classification ap-
proaches (Fig. 8), AMBR and Prototype using the NAFV,
as their input features, are least effective, as expected. The
HMM, which considers action orders, shows the best per-
formance, followed by the ATPM Prototype and ATPM
AMBR.

Although the HMM has the highest performance, it
does not necessarily mean that the HMM is more prag-
matic than the ATPM. This is because the HMM struc-
ture and initial parameters were set using a priori. It is
commonly known that the HMM performance depends
on its structure and initial parameters. To verify this, we
trained the HMM with all parameters randomly initial-
ized. The average performance for ten trials of the HMM
with four, six, and eight states was 74.6% (standard de-
viation = 24.5), 82.1% (standard deviation = 27.5), and

78.2% (standard deviation = 27.8), respectively. In con-
trast, the ATPM Prototype and ATPM AMBR require no
parameter settings.

4.3. Simac Data with Four Types of Agent
Each dataset was obtained by running 2000 agents for

500 simulation-time cycles. Four types of agent based on
Bartle’s categorization, i.e., Achievers, Explorers, Social-
izers, and Killers, were simulated (Fig. 9).

The ATPM Prototype has the best performance, fol-
lowed by the HMM. For the same input features, the
Prototype is superior to AMBR. Because the four player
types implemented in Simac have distinct characteris-
tics, prototype-based classifiers such as Prototype and the
HMM are more appropriate than AMBR.

4.4. Simac Data with Two Types of Agent
In this experiment, two types of agents were imple-

mented to obtain data in which each agent type has sim-
ilar action frequencies but different action orders. Other
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Fig. 9. Performance comparison for Simac logs with four agent types.
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Fig. 10. Performance comparison for Simac logs with two agent types.

experiment settings were same as those in the previous
subsection.

Agent types are summarized as follows:

� The Killer prioritizes killing, roaming around look-
ing for monsters or players to attack. The difference
between the Killer and the Strong Killer below is that
the Killer requires more attacks to kill a monster be-
cause it is weaker than the Strong Killer.

� The Strong Killer, similar to the Killer, attacks any-
thing alive. It kills monsters with fewer attacks than
the Killer.

Killers and Strong Killers have typical action patterns
with the same action frequencies but action orders are dif-
ferent reflecting their strength. A typical action sequence
of the Killer is “wwwwaaaawwwwaaaaww” while that
of the Strong Killer is “wwaawwaawwaawwaaww”, with
“w” and “a” standing for walk and attack, respectively.

The HMM has the best performance, followed by the
ATPM Prototype with a shade of difference (Fig. 10).

As explained earlier, the HMM’s high performance is not
surprising because knowledge in the simulator was used.
The performances of both Prototype and AMBR using the
NAFV as their input features are the lowest because the
NAFV cannot handle action orders in data. Prototype per-
forms better than AMBR.

5. Conclusions

We have proposed a new player classification approach
(ATPM AMBR and ATPM Prototype) using the ATPM as
the input feature to the two classifiers in use and KLE as
the distance measure. The experimental results show that
our approach has stable performance for player logs gen-
erated by Zereal and Simac. The ATPM Prototype per-
forms better than the ATPM AMBR in identifying player
types with distinct characteristics.

The existing approach using the NAFV (NAFV AMBR
and NAFV Prototype) shows low performance except
when player types have distinctly different action frequen-
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Table 1. State transition probability matrix of Killers (Unit:%).

States Moving Fighting Getting Losing Talking Trading Finding Dying
Moving 40 19.99 10 10 10 0 10 0.01
Fighting 20 29.98 25 25 0 0 0 0.02
Getting 99.9 0 0 0 0 0 0 0.01
Losing 49.99 49.99 0 0 0 0 0 0.02
Talking 20 0 0 0 69.99 10 0 0.01
Trading 30 0 0 0 69.99 0 0 0.01
Finding 40 0 40 19.99 0 0 0 0.01
Dying 0 0 0 0 0 0 0 0

cies. In all cases, the HMM, with the use of a prior, shows
comparatively high performance, especially for data with
specific patterns of action orders. The HMM performance
depends, however, on initial settings.

The proposed approach requires no parameter settings
and is promising for online-game player classification. As
our future work, we will conduct experiments with actual
online game data and user behavior data in ubiquitous en-
vironments.
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Table 2. Observation probability matrix for all agent types.

State Action
Moving Walk (70%), Run (20%), Jump (10%)
Fighting Use magic 1 (10%), 2 (10%), 3 (5%), Use weapon 1 (10%), 2 (10%), 3 (5%), Hit

with hands strong (10%), middle (10%), weak (5%), Hit with legs strong (10%),
middle (10%), weak (5%)

Getting Get item 1 (10%), 2 (10%), 3 (10%), Get weapon 1 (10%), 2 (10%), 3 (10%), Get
magic 1 (10%), 2 (10%), 3 (10%), Get power points (5%),Get life points (5%)

Losing Lose item 1 (10%), 2 (10%), 3 (10%), Lose weapon 1 (10%), 2 (10%), 3 (10%),
Lose magic 1 (10%), 2 (10%), 3 (10%), Lose power points (5%), Lose life points
(5%)

Finding Find secrete place 1 (20%), 2 (15%), 3 (15%), Find secrete item 1 (20%), 2 (15%),
3 (15%)

Talking Talk (100%)
Trading Sell item 1 (20%), 2 (15%), 3 (15%), Buy item 1 (20%), 2 (15%), 3 (15%)
Dying Die (100%)

Table 3. Initial state distribution matrix for all agent types (Unit:%).

States Moving Fighting Getting Losing Talking Trading Finding Dying
Probability 99.95 0.01 0.01 0.01 0.01 0 0.01 0
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