
Procedural Play Generation According to Play Arcs Using Monte-Carlo Tree Search

Suguru Ito† Makoto Ishihara† Marco Tamassia‡ Tomohiro Harada∗ Ruck Thawonmas∗ and Fabio Zambetta‡
†Graduate School of Information Science and Engineering, Ritsumeikan University, Shiga, Japan

‡School of Science, Royal Melbourne Institute of Technology, Melbourne, Australia
∗College of Information Science and Engineering, Ritsumeikan University, Shiga, Japan

†{is0202iv, is0153hx}@ed.ritsumei.ac.jp
‡{marco.tamassia, fabio.zambetta}@rmit.edu.au

∗{harada, ruck}@ci.ritsumei.ac.jp

KEYWORDS

Monte-Carlo Tree Search, Procedural Play Generation,
Fighting Game, Puppet-Master AI

ABSTRACT

More than a million spectators watch game stream-
ing platforms such as Twitch every month. This phe-
nomenon suggests video games are a powerful enter-
tainment media not just for players but for spectators
as well. Since each spectator has personal preferences,
customized spectator-specific game plays are arguably
a promising option to increase the entertainment value
of video games streaming. In this paper, we propose an
Artificial Intelligence (AI) that automatically generates
game plays according to play arcs using Monte Carlo
Tree Search (MCTS). In particular, we concentrate on
fighting games and drive MCTS to achieve specific hit-
points differences between characters at different mo-
ments of the game. Our preliminary results show that
the proposed AI can generate game plays following the
desired transition of game progress.

INTRODUCTION

Twitch, a popular game streaming platform, is followed
by more than a million spectators every month. This
phenomenon suggests video games are a powerful enter-
tainment media not just for players but for spectators
as well. Typically, spectators watch game plays suitable
to their needs; for example, some spectators may prefer
game plays in which the game is cleared quickly while
others may prefer watching tight matches. Overall, this
means that, because of the diverse preferences, person-
alization of game plays has the potential to increase the
entertainment value of game streaming.

Recently, Thawonmas and Harada proposed the novel
concept of Procedural Play Generation (PPG) (Tha-
wonmas and Harada 2017). Their goal is to generate
game plays automatically, using one or more Artificial
Intelligences (AI), and to recommend those plays to
spectators according to their preferences. As a first step
toward realization of this concept, in this paper, we fo-

cus on an AI that can generate game plays that follow
a given game progress.

Recent years have seen an increase in research on
game AI both from academic and industrial researchers.
Among the techniques achieving the highest results is
Monte-Carlo Tree Search (MCTS). MCTS has achieved
high performance in many games, including several real-
time games (Ishihara et al. 2016, Browne et al. 2012).
Most of the research on MCTS focuses on producing
stronger and stronger agent players; however, MCTS
can be used to optimize decisions towards different goals.
Because MCTS does not require training and can adapt
to different situations on-the-fly, it is a promising option
for generating customized game plays for entertaining
purposes.

In this paper, we propose an AI that can automatically
generate various game plays using MCTS. We focus on
fighting games, and we use the FightingICE platform
(Lu et al. 2013) for our tests. In particular, we focus on
different ways in which a game can progress; these are
called Play Arcs (PA). In the context of fighting games,
a reliable way to assess the current progress of a game
is the hit-points (HP) difference between the characters.
We use an evaluation function for MCTS that targets
the desired HP difference, and vary this target HP dif-
ference throughout the game. This technique can be
used to generate games that follow different PAs, which
can accommodate different spectators’ preferences. The
proposed AI is a “puppet-master”, controlling all char-
acters in the game in order to unfold the desired PA; we
call this type of AI a Puppet-Master AI.

GENERATING GAME PLAYS ACCORDING
TO PLAY ARCS USING MCTS

Related Works

Studies in controlling multiple players have been con-
ducted not only in games but also in narrative gener-
ation (Kartal et al. 2014, Nijssen and Winands 2013).
However, these studies focused on turn-based systems,
where each character takes turns to perform his/her ac-
tion. Fighting games, on which this work focuses, can

RUCK
タイプライターテキスト
Proc. of the 18th International Conference on Intelligent Games and Simulation (GAME-ON'2017), Carlow, Ireland, pp. 67-71, Sep. 6-8, 2017.



Figure 1: An overview of PM-MCTS

be reasoned as real-time asynchronous systems where
each character determines its own action separately and
performs the action when possible. As a result, we need
an approach that continuously monitors both players to
find when either can conduct a new action and then
determines an appropriate action for that player.
Sanselone et al. (Sanselone et al. 2014) propose a similar
approach in that they use MCTS in a multi-player asyn-
chronous system. However, they applied their MCTS to
an edutainment game with a longer expected response
time than fighting games. In the next section, we de-
scribe our approach to tackle this challenge.

Proposed Approach

An overview of the proposed Puppet-Master MCTS
(PM-MCTS) is depicted in Figure 1. In the tree, each
node represents a choice for either of the characters (cir-
cle: P1; square: P2). MCTS builds such a tree starting
from an initial state, defined by information such as,
among others, HP, energy, coordinates, and action of
each character and remaining time in the game. Each
edge represents a decision point (an action) for a player
and an arrow indicates a state transition that follows
the execution of that action.
As with normal MCTS, PM-MCTS comprises four
steps: selection, expansion, rollout, and backpropaga-
tion. It is worth reminding that every node of the tree
contains the value from the perspective of both charac-
ters, as well as a counter of how many times the node
has been passed through. The four steps of PM-MCTS
are explained in the following section.

Selection

The tree is descended from the root node following a
thread of promising nodes until a leaf node is reached.
In order to balance the estimate of the “value” of a node
(defined below) with the possibility that the estimate
may be inaccurate, a commonly used approach is Up-
per Confidence Bounds (UCB1) applied to Trees (UCT)
(Kocsis and Szepesvári 2006). UCT minimizes “regret”,

which is the difference between what could have been
gained by always choosing the best child node (which is
not known) and what was actually gained. The formula
that UCT uses is:

UCTi = Xp
i + C

√
2 lnN

Ni
, (1)

where Xp
i is the average value of action i from the per-

spective of player p, the one whose node is being evalu-
ated; Ni is the number of times action i was tried at the
node; N is the sum of Ni for all actions (action i and
its sibling actions) and C > 0 is a constant.

Expansion

After a leaf node is reached, if the leaf is within depth
Dmax and has been visited at least Nmax times, all chil-
dren for the leaf are created, one for every possible ac-
tion. Notice that the root already has its children when
the process starts.

Rollout

The chain of actions encoded in the path root–leaf is
run by a simulator, followed by a chain of random ac-
tions. Notice that the simulator only executes each ac-
tion when the character has finished performing the pre-
vious action. The outcome of the rollout is evaluated
from both characters’ perspective, using the following
formula:

Xp
i =

1

Ni

Ni∑
j=1

strengthj × PAj , (2)

where strengthj represents how close the simulation is to
a victory for the character and is calculated by Equation
(3), and PAj represents the difference between the de-
sired HP difference (determined by the PA) and the HP
difference achieved in the simulation and is calculated
by Equation (4).

strengthj = oppHProot
j − oppHProllout

j , (3)



where oppHProot
j and oppHProllout

j represent, respec-
tively, the opponent’s HP in the root node and after
the j-th rollout. The more the opponent HP decreases,
the higher is this value.

PAj = (1− γ)

(
1− tanh

|diffHPleaf
ideal−diffHPleaf

j |
S

)
+γ

(
1− tanh

|diffHProllout
ideal −diffHProllout

j |
S

)
,(4)

where diffHPleaf
ideal and diffHProllout

ideal represent the ideal
HP difference of the characters at the corresponding
time; diffHPreal

j and diffHProllout
j represent, respectively,

the HP difference of the characters in the leaf node and
after the j-th rollout. In addition, S is a scale parame-
ter, and γ ∈ [0, 1] is a discount rate. PAj spans in the
range from 0 to 1, where 1 means that the ideal PA has
been generated. The parameter γ balances the value of
the leaf node and the predicted value. The lower the
HP difference between the characters, the higher is PAj

(between 0 and 1).
MCTS normally evaluates the state after the random
rollout, but this has high variance, so to normalize for
that we also consider the leaf node which is closer in time
(less variance) to the current time and not random.

Backpropagation
The value from the perspective of each player, computed
after a rollout, is propagated backward from the leaf
node to the root node. In this process, the values for
both characters are updated in each node along the path
and the counters are increased accordingly.
PM-MCTS performs this process until one of the char-
acters requests its next action. When this happens, it
selects the child of the root node with the highest X

p

i

value.
The aim of the evaluation function of PM-MCTS is to
balance between following the trajectory dictated by the
PA and the believability of the performance of the play-
ers. If only the PA term were considered, the characters
could behave excessively against their interest, and this
could destroy the suspension of disbelief in the specta-
tors. For example, in a PA in which P1 needs to lose
HP with respect to P2 (e.g. 15 to 45 seconds in Figure 2
(a)), P1 will deliberately try to be hit to follow the PA.
Such actions will appear unnatural for the spectators
and cause them to lose interest in the game. To avoid
this, the strength term compromises believability with
PA targeting.

EXPERIMENT

We conduct an experiment to verify whether our pro-
posed AI (Puppet-Master AI; PMAI) can generate game
plays according to given PAs. We use the FightingICE
platform (Lu et al. 2013) as a testbed; FightingICE has

Table 1: The parameters used in the experiment

Notation Meaning Value
C Balance parameter 0.025
Nmax Threshold of the number of visits 10
Dmax Threshold of the tree depth 10
S Scale parameter 10
γ Discount rate 0.5

been used for AI agent competitions in the recent years.
We attempt to generate three kinds of PAs shown in
Figure 2. We run 50 games for each PA. The parameter
settings for the PMAI are shown in Table 1. These pa-
rameters are set empirically through a pre-experiment.
Actions in PM-MCTS are 56 actions available in Fight-
ingICE.

RESULTS

The comparison of ideal PAs with generated PAs, aver-
aged over 50 games, is shown in Figure 3. In Figure 3,
the horizontal axis indicates the game progress in terms
of time (seconds), and the y-axis indicates the HP dif-
ference between the characters at a given time. The red
line represents the ideal PA, the green line represents
the PA generated by PMAI, and the error bars indicate
the standard deviation of the HP difference at that time
in generated PAs. We can see that generated PAs mimic
the target PAs quite closely even though PMAI seems to
have more difficulty when the slope of the target curve
changes. These results suggest that PMAI can generate
game plays according to a given PA.

However, the standard deviation of the HP difference
seems to grow larger after the mid-point of the game in
the Play Arc I and II. This is caused by player p execut-
ing a powerful attack called special attack that makes
the PA value in Equation (2) fail to counterbalance be-
cause of the other term’s magnitude. Notice that the
special attack requires a large amount of character en-
ergy and can therefore only be performed late in the
game.

We conduct a second experiment to test whether PMAI
can generate game plays according to PAs even if their
form suddenly changes during the game. The three PAs
used in this experiment are shown in Figure 4. We set
another PA as the ideal PA after the mid-point of the
game. For example, the PA of Figure 4 (a) consists of
two PAs; the first half of the game is the PA of Figure 2
(a), and the latter half of the game is the PA of Figure
2 (b). We run 50 games for each PA like the previous
experiment.

Figure 5 shows the performance of PMAI when follow-
ing these curves. Again, the figures show averages over
50 games along with error bars. The figures show that
PMAI can track the sudden changes within a few sec-
onds, suggesting that it is robust to erratic PA curves.



(a) Play Arc I (b) Play Arc II (c) Play Arc III

Figure 2: An overview of Play Arcs

(a) Play Arc I (b) Play Arc II (c) Play Arc III

Figure 3: Comparison of ideal PAs with generated PAs

(a) Combined Play Arc I (b) Combined Play Arc II (c) Combined Play Arc III

Figure 4: An overview of combined Play Arcs

(a) Combined Play Arc I (b) Combined Play Arc II (c) Combined Play Arc III

Figure 5: Comparison of ideal combined PAs with generated PAs



CONCLUSION

The PPG system needs an AI that can generate game
plays that follow a given game progress curve, called
Play Arc (PA). This is then used to generate games
tailored to specific spectators, according to their prefer-
ences. In this paper, we propose the ”Puppet-Master”
fighting game AI (PMAI) that controls both charac-
ters in the game to automatically generate various game
plays using MCTS. The experimental results show that
PMAI can generate PAs that track target PAs quite
closely, even when said PAs exhibit sudden changes in
their shape.
A limitation of this work is that the evaluation function
of PMAI, detailed in Equation (4), only considers the
HP difference. While, arguably, this could be the most
important element, other elements could be taken into
account, such as the distance of the characters, their
energy or the number of combos executed. Also, we
only focused on the generation of game plays according
to given PAs, with no consideration on whether or not
generated game plays entertain spectators. In future
work, we plan to conduct user studies to evaluate the
entertaining value of various PAs.

REFERENCES

Browne C.B.; Powley E.; Whitehouse D.; Lucas S.M.;
Cowling P.I.; Rohlfshagen P.; Tavener S.; Perez
D.; Samothrakis S.; and Colton S., 2012. A Sur-
vey of Monte Carlo Tree Search Methods. IEEE
Transactions on Computational Intelligence and AI
in Games, 4, no. 1, 1–43.

Ishihara M.; Miyazaki T.; Chu C.Y.; Harada T.;
and Thawonmas R., 2016. Applying and Improving
Monte-Carlo Tree Search in a Fighting Game AI. In
13th International Conference on Advances in Com-
puter Entertainment Technology. ACM, Article No.
27.

Kartal B.; Koenig J.; and Guy S.J., 2014. User-Driven
Narrative Variation in Large Story Domains Using
Monte Carlo Tree Search. In 2014 international con-
ference on Autonomous agents and multi-agent sys-
tems. 69–76.

Kocsis L. and Szepesvári C., 2006. Bandit Based Monte-
Carlo Planning. In European Conference on Machine
Learning. 282–293.

Lu F.; Yamamoto K.; Nomura L.H.; Mizuno S.; Lee
Y.; and Thawonmas R., 2013. Fighting Game Artifi-
cial Intelligence Competition Platform. In IEEE 2nd
Global Conference on Consumer Electronics (GCCE).
IEEE, 320–323.

Nijssen J.A.M. andWinands M.H.M., 2013. Search Poli-

cies in Multi-Player Games. International Computer
Games Association, 36, no. 1, 3–21.

Sanselone M.; Sanchez S.; Sanza C.; Panzoli D.; and
Duthen Y., 2014. Control of Non Player Characters
in a Medical Learning Game with Monte Carlo Tree
Search. In Companion Publication of the 2014 An-
nual Conference on Genetic and Evolutionary Com-
putation. 51–52.

Thawonmas R. and Harada T., 2017. AI for Game Spec-
tators: Rise of PPG. In AAAI 2017 Workshop on
What’s next for AI in games. AAAI, 1032–1033.

AUTHOR BIOGRAPHIES

SUGURU ITO graduated from the College of Infor-
mation Science and Engineering, Ritsumeikan Univer-
sity in March 2017. Currently, he is enrolled at the
Graduate School of Information Science and Engineer-
ing, Ritsumeikan University. He is engaged in research
on the fighting game AI.

MAKOTO ISHIHARA graduated from the College
of Information Science and Engineering, Ritsumeikan
University in March 2016. Currently, he is enrolled at
the Graduate School of Information Science and Engi-
neering, Ritsumeikan University. He is engaged in re-
search on the fighting game AI.

MARCO TAMASSIA is a Ph.D. student in RMIT
University, Melbourne, Australia. His research interest
is in Artificial Intelligence and Machine Learning, with
a special eye for game applications. He obtained BS and
MS Computer Science magna cum laude in University
of Verona, Verona, Italy, in 2010 and 2012.

TOMOHIRO HARADA is an assistant professor at
the College of Information Science and Engineering, Rit-
sumeikan University. His research interests include evo-
lutionary computation, machine learning, and game AI.

RUCK THAWONMAS is a full professor at the
College of Information Science and Engineering, Rit-
sumeikan University. His research interests include
game AI and computational intelligence.

FABIO ZAMBETTA is a Senior Lecturer at RMIT
University, Australia where he coordinates the Games
and Graphics Programming degree. His main research
interests include artificial intelligence in games, rein-
forcement learning and virtual, augmented, mixed real-
ity. He is an IEEE member and a member of the IEEE
Games Technical Committee.




